ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/266578.

Molecular layer interneurons in cerebellum encode valence in associative learning (Ma et al 2020)

 Download zip file 
Help downloading and running models
Accession:266578
We used two-photon microscopy to study the role of ensembles of cerebellar molecular layer interneurons (MLIs) in a go-no go task where mice obtain a sugar water reward. In order to begin understanding the circuit basis of our findings in changes in lick behavior with chemogenetics in the go-no go associative learning olfactory discrimination task we generated a simple computational model of MLI interaction with PCs.
Reference:
1 . Ma M, Futia GL, De Souza FM, Ozbay BN, Llano I, Gibson EA, Restrepo D (2020) Molecular layer interneurons in the cerebellum encode for valence in associative learning Nat Commun . [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Cerebellum; Mouse;
Cell Type(s): Cerebellum Purkinje GABA cell; Cerebellum interneuron stellate GABA cell;
Channel(s):
Gap Junctions:
Receptor(s): AMPA; GabaA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Action Potentials; Detailed Neuronal Models;
Implementer(s): Simoes-de-Souza, Fabio [fabio.souza at ufabc.edu.br];
Search NeuronDB for information about:  Cerebellum Purkinje GABA cell; Cerebellum interneuron stellate GABA cell; GabaA; AMPA; Gaba; Glutamate;
/
MaEtAl2020
README.html
bkpkj.mod *
cad.mod *
cadiff.mod *
cae.mod *
cap2.mod *
captain.mod *
cat.mod *
cha.mod *
erg.mod *
gkca.mod *
Golgi_Ca_LVA.mod *
Golgi_KA.mod *
Golgi_KV.mod
Golgi_Na.mod *
hpkj.mod *
k23.mod *
ka.mod *
kc3.mod *
kd.mod *
kdyn.mod *
khh.mod *
km.mod *
kpkj.mod *
kpkj2.mod *
kpkjslow.mod *
kv1.mod *
leak.mod *
lkpkj.mod *
myexchanger.mod *
myexchangersoma.mod *
mypump.mod *
mypumpsoma.mod *
nadifl.mod *
narsg.mod *
newnew.mod *
pump.mod *
10480.tmp
2_compartment_template.hoc
full.ses *
lesbos.ses *
mosinit.hoc
mosinit_PC_SC_SminusCNO.hoc
mosinit_PC_SC_SminusSaline.hoc
mosinit_PC_SC_SplusCNO.hoc
mosinit_PC_SC_SplusSaline.hoc
PC_alx.swc
PF_template.hoc
Plot_results.m
SC_morphology.hoc
SC_template.hoc
SC_withoutaxon.swc
screenshot.png
                            
TITLE Voltage-gated low threshold potassium current from Kv1 subunits
: FORREST MD (2014) Two Compartment Model of the Cerebellar Purkinje Neuron

COMMENT

NEURON implementation of a potassium channel from Kv1.1 subunits
Kinetical scheme: Hodgkin-Huxley m^4, no inactivation

Kinetic data taken from: Zerr et al., J.Neurosci. 18 (1998) 2842
Vhalf = -28.8 +/- 2.3 mV; k = 8.1 +/- 0.9 mV

The voltage dependency of the rate constants was approximated by:

alpha = ca * exp(-(v+cva)/cka)
beta = cb * exp(-(v+cvb)/ckb)

Parameters ca, cva, cka, cb, cvb, ckb
are defined in the CONSTANT block.

Laboratory for Neuronal Circuit Dynamics
RIKEN Brain Science Institute, Wako City, Japan
http://www.neurodynamics.brain.riken.jp

Reference: Akemann and Knoepfel, J.Neurosci. 26 (2006) 4602
Date of Implementation: April 2005
Contact: akemann@brain.riken.jp

ENDCOMMENT


NEURON {
	SUFFIX kv1
	USEION k READ ek WRITE ik
	RANGE gk, gbar, ik
	GLOBAL ninf, taun
}

UNITS {
	(mV) = (millivolt)
	(mA) = (milliamp)
	(nA) = (nanoamp)
	(pA) = (picoamp)
	(S)  = (siemens)
	(nS) = (nanosiemens)
	(pS) = (picosiemens)
	(um) = (micron)
	(molar) = (1/liter)
	(mM) = (millimolar)		
}

CONSTANT {
	q10 = 3

	ca = 0.12889 (1/ms)
	cva = 45 (mV)
	cka = -33.90877 (mV)

	cb = 0.12889 (1/ms)
      cvb = 45 (mV)
	ckb = 12.42101 (mV)         
}

PARAMETER {
	v (mV)
	celsius (degC)
	
	gbar = 0.011 (mho/cm2)   <0,1e9>
}


ASSIGNED {
 	ik (mA/cm2) 
	ek (mV)
	gk  (mho/cm2)
	ninf
	taun (ms)
	alphan (1/ms)
	betan (1/ms)
	qt
}

STATE { n }

INITIAL {
	qt = q10^((celsius-22 (degC))/10 (degC))
	rates(v)
	n = ninf
}

BREAKPOINT {
	SOLVE states METHOD cnexp
      gk = gbar * n^4 
	ik = gk * (v - ek)
}

DERIVATIVE states {
	rates(v)
	n' = (ninf-n)/taun 
}

PROCEDURE rates(v (mV)) {
	alphan = alphanfkt(v)
	betan = betanfkt(v)
	ninf = alphan/(alphan+betan) 
	taun = 1/(qt*(alphan + betan))       
}

FUNCTION alphanfkt(v (mV)) (1/ms) {
	alphanfkt = ca * exp(-(v+cva)/cka) 
}

FUNCTION betanfkt(v (mV)) (1/ms) {
	betanfkt = cb * exp(-(v+cvb)/ckb)
}





Loading data, please wait...