Human tactile FA1 neurons (Hay and Pruszynski 2020)

 Download zip file 
Help downloading and running models
"... we show that synaptic integration across the complex signals from the first-order neuronal population could underlie human ability to accurately (< 3°) and rapidly process the orientation of edges moving across the fingertip. We first derive spiking models of human first-order tactile neurons that fit and predict responses to moving edges with high accuracy. We then use the model neurons in simulating the peripheral neuronal population that innervates a fingertip. We train classifiers performing synaptic integration across the neuronal population activity, and show that synaptic integration across first-order neurons can process edge orientations with high acuity and speed. ... our models suggest that integration of fast-decaying (AMPA-like) synaptic inputs within short timescales is critical for discriminating fine orientations, whereas integration of slow-decaying (NMDA-like) synaptic inputs supports discrimination of coarser orientations and maintains robustness over longer timescales"
1 . Hay E, Pruszynski JA (2020) Orientation processing by synaptic integration across first-order tactile neurons. PLoS Comput Biol 16:e1008303 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Axon; Realistic Network;
Brain Region(s)/Organism: Human;
Cell Type(s):
Gap Junctions:
Receptor(s): AMPA; NMDA;
Simulation Environment: MATLAB;
Model Concept(s): Sensory coding; Synaptic Integration; Receptive field;
Search NeuronDB for information about:  AMPA; NMDA;
% Author: Etay Hay
% Orientation processing by synaptic integration across first-order tactile neurons
% (Hay and Pruszynski, PLoS Comput Biol 2020 Dec 2)

In this entry you can find the simulation code, models, and data corresponding to the above paper.

Among the files are:

1. Files F1* - F7* can be used to reproduce the figures in the manuscript.

2. derive_models and derive_model_ga:
optimization code for single neurons using genetic algorithm.

3. derive_network_classifier_ga:
optimization code to train classifiers via synaptic integration over the neuronal population.

4. sim_edge_response, run_drum_stim, run_network_classifier:
simulation code for running the neuron response and population response.

Loading data, please wait...