Cerebellar Golgi cells, dendritic processing, and synaptic plasticity (Masoli et al 2020)

 Download zip file 
Help downloading and running models
Accession:266806
The Golgi cells are the main inhibitory interneurons of the cerebellar granular layer. To study the mechanisms through which these neurons integrate complex input patterns, a new set of models were developed using the latest experimental information and a genetic algorithm approach to fit the maximum ionic channel conductances. The models faithfully reproduced a rich pattern of electrophysiological and pharmacological properties and predicted the operating mechanisms of these neurons.
Reference:
1 . Masoli S, Ottaviani A, Casali S, D'Angelo E (2020) Cerebellar Golgi cell models predict dendritic processing and mechanisms of synaptic plasticity. PLoS Comput Biol 16:e1007937 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum golgi cell;
Channel(s): I Sodium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Neurotransmitter dynamics; Calcium dynamics;
Implementer(s): Masoli, Stefano [stefano.masoli at unipv.it];
Search NeuronDB for information about:  I Sodium;
/
Golgi_cell_2020
Morphology_1
mod_files
Cav12.mod *
Cav13.mod *
Cav2_3.mod *
Cav3_1.mod *
cdp5StCmod.mod *
GOLGI_Ampa_mossy_det_vi.mod *
GOLGI_Ampa_pf_aa_det_vi.mod *
GRC_CA.mod *
GRC_KM.mod *
Hcn1.mod *
Hcn2.mod *
Kca11.mod *
Kca22.mod *
Kca31.mod *
Kv11.mod *
Kv34.mod *
Kv43.mod *
Leak.mod *
Nav16.mod *
PC_NMDA_NR2B.mod *
                            
: model from Evans et al 2013, transferred from GENESIS to NEURON by Beining et al (2016), "A novel comprehensive and consistent electrophysiologcal model of dentate granule cells"
: also added Calcium dependent inactivation

NEURON {
	SUFFIX Cav13
	USEION ca READ cai, eca WRITE ica   :,cai,cao...., cai, cao
	USEION lca WRITE ilca VALENCE 0
	RANGE gbar, g
	GLOBAL kf, h2Tau, VDI
}

UNITS {
	(molar) = (1/liter)
	(mM) = (millimolar)
	(mV) = (millivolt)
	(mA) = (milliamp)
	(S) = (siemens)
	(um) = (micrometer)
}

ASSIGNED {
	ilca		(mA/cm2) : instantaneous calcium current of l-type calcium channel
	v			(mV)
	ica		(mA/cm2)
	g		(S/cm2)
	eca 		(mV)
	diam		(um)
	cai 		(mM)
	mInf  (1)
	hInf  (1)
	h2Inf (1)
	mTau (ms)
}

PARAMETER {
	hTau 	= 44.3 (ms)
	h2Tau = 0.5 (ms)
	gbar = 0	(S/cm2)
		vshift = 0 		(mV)
		
		:parameters for calcium-dep inactivation (CDI) 
			:f= (0.001/(0.001+[Ca]))Poirazi CA1  2003
			:f= (0.0005/(0.0005+[Ca])) Rhodes and Llinas 2001 Cort Pyr
	kf		=			0.0005 (mM)  : factor in inactivation, the higher the less sensitive. others uses 0.0002.. standen and stanfield use 0.001mM in original paper	
	VDI = 1
}

STATE {m h h2}  :a b  :cai (mM) cao (mM)

INITIAL {
	rates()
	m = mInf
	h = hInf
	h2 = h2Inf
}

BREAKPOINT {
	rates()
	SOLVE state METHOD cnexp
	g = gbar*m*h*h2 : h2 calcium dependent inactivation is taken from santhakumar 05.. tjos assumes instantaneous calcium inactivation
	ica = (g)*(v - eca) : 
	ilca = ica
	
}

DERIVATIVE state {	: exact when v held constant integrates over dt step
	m' = (mInf-m) / mTau
	h' = (hInf-h) / hTau
	h2' = (h2Inf-h2)/h2Tau
}

PROCEDURE rates(){
		LOCAL mA,mB
		mA = (39800*( v + 67.24))/( exp ( (v + 67.24)/15.005) - 1.0)
		mB = 3500* exp(v/31.4) 
		mTau = (1/(mA + mB))
		
		mInf = 1.0/((exp ( (v - (-40.0))/(-5))) + 1.0)

		hInf = VDI/( (exp ( (v - (-37))/(5))) + 1.0) + (1-VDI)
		:h2 = caIn(cai)
		h2Inf = kf/(kf+cai)
}







Loading data, please wait...