Cerebellar Golgi cells, dendritic processing, and synaptic plasticity (Masoli et al 2020)

 Download zip file 
Help downloading and running models
Accession:266806
The Golgi cells are the main inhibitory interneurons of the cerebellar granular layer. To study the mechanisms through which these neurons integrate complex input patterns, a new set of models were developed using the latest experimental information and a genetic algorithm approach to fit the maximum ionic channel conductances. The models faithfully reproduced a rich pattern of electrophysiological and pharmacological properties and predicted the operating mechanisms of these neurons.
Reference:
1 . Masoli S, Ottaviani A, Casali S, D'Angelo E (2020) Cerebellar Golgi cell models predict dendritic processing and mechanisms of synaptic plasticity. PLoS Comput Biol 16:e1007937 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum golgi cell;
Channel(s): I Sodium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Neurotransmitter dynamics; Calcium dynamics;
Implementer(s): Masoli, Stefano [stefano.masoli at unipv.it];
Search NeuronDB for information about:  I Sodium;
/
Golgi_cell_2020
Morphology_2
mod_files
Cav12.mod *
Cav13.mod *
Cav2_3.mod *
Cav3_1.mod *
cdp5StCmod.mod *
GOLGI_Ampa_mossy_det_vi.mod *
GOLGI_Ampa_pf_aa_det_vi.mod *
GRC_CA.mod *
GRC_KM.mod *
Hcn1.mod *
Hcn2.mod *
Kca11.mod *
Kca22.mod *
Kca31.mod *
Kv11.mod *
Kv34.mod *
Kv43.mod *
Leak.mod *
Nav16.mod *
PC_NMDA_NR2B.mod *
                            
TITLE Ca R-type channel with medium threshold for activation
: used in distal dendritic regions, together with calH.mod, to help
: the generation of Ca++ spikes in these regions
: uses channel conductance (not permeability)
: written by Yiota Poirazi on 11/13/00 poirazi@LNC.usc.edu
: From car to Cav2_3

NEURON {
	  SUFFIX Cav2_3
	  THREADSAFE
	  USEION ca READ eca WRITE ica
	  RANGE gcabar, m, h, g, gmax, ica
	  RANGE inf, tau
}

UNITS {
	  (mA) = (milliamp)
	  (mV) = (millivolt)
}

PARAMETER {              : parameters that can be entered when function is called in cell-setup
    v             (mV)
    celsius = 34	(degC)
    gcabar = 0    (mho/cm2) : initialized conductance
	  eca = 140     (mV)      : Ca++ reversal potential
}  

STATE {	m h }            : unknown activation and inactivation parameters to be solved in the DEs  

ASSIGNED {               : parameters needed to solve DE
	  ica    (mA/cm2)
    inf[2]
	  tau[2] (ms)
    g      (mho/cm2)
    gmax   (mho/cm2)
}

BREAKPOINT {
	  SOLVE states METHOD cnexp
    g = gcabar*m*m*m*h
	  ica = g*(v - eca)
    if (g > gmax) {
        gmax = g
    }
}

INITIAL {
    mhn(v)
    m = inf[0]
    h = inf[1]
    g = gcabar*m*m*m*h
    ica = g*(v - eca) : initial Ca++ current value
    gmax = g
}

DERIVATIVE states {
	  mhn(v)
	  m' =  (inf[0] - m)/tau[0]
	  h' =  (inf[1] - h)/tau[1]
}	

FUNCTION varss(v (mV), i) {
	  if (i==0) {
	      varss = 1 / (1 + exp((v+48.5(mV))/(-3(mV)))) : Ca activation
	  }
	  else if (i==1) {
        varss = 1/ (1 + exp((v+53(mV))/(1(mV))))    : Ca inactivation
	  }
}

FUNCTION vartau(v (mV), i) (ms) {
	  if (i==0) {
        vartau = 50  : activation variable time constant
    }
	  else if (i==1) {
        vartau = 5   : inactivation variable time constant
    }
	  
}	

PROCEDURE mhn(v (mV)) {LOCAL a, b :rest = -70
    TABLE inf, tau DEPEND celsius FROM -100 TO 100 WITH 200
  	FROM i=0 TO 1 {
	      tau[i] = vartau(v,i)
		    inf[i] = varss(v,i)
	  }
}






















Loading data, please wait...