Cerebellar Golgi cells, dendritic processing, and synaptic plasticity (Masoli et al 2020)

 Download zip file 
Help downloading and running models
Accession:266806
The Golgi cells are the main inhibitory interneurons of the cerebellar granular layer. To study the mechanisms through which these neurons integrate complex input patterns, a new set of models were developed using the latest experimental information and a genetic algorithm approach to fit the maximum ionic channel conductances. The models faithfully reproduced a rich pattern of electrophysiological and pharmacological properties and predicted the operating mechanisms of these neurons.
Reference:
1 . Masoli S, Ottaviani A, Casali S, D'Angelo E (2020) Cerebellar Golgi cell models predict dendritic processing and mechanisms of synaptic plasticity. PLoS Comput Biol 16:e1007937 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum golgi cell;
Channel(s): I Sodium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Neurotransmitter dynamics; Calcium dynamics;
Implementer(s): Masoli, Stefano [stefano.masoli at unipv.it];
Search NeuronDB for information about:  I Sodium;
/
Golgi_cell_2020
Morphology_2
mod_files
Cav12.mod *
Cav13.mod *
Cav2_3.mod *
Cav3_1.mod *
cdp5StCmod.mod *
GOLGI_Ampa_mossy_det_vi.mod *
GOLGI_Ampa_pf_aa_det_vi.mod *
GRC_CA.mod *
GRC_KM.mod *
Hcn1.mod *
Hcn2.mod *
Kca11.mod *
Kca22.mod *
Kca31.mod *
Kv11.mod *
Kv34.mod *
Kv43.mod *
Leak.mod *
Nav16.mod *
PC_NMDA_NR2B.mod *
                            
TITLE Voltage-gated low threshold potassium current from Kv1 subunits

COMMENT

NEURON implementation of a potassium channel from Kv1.1 subunits
Kinetical scheme: Hodgkin-Huxley m^4, no inactivation

Experimental data taken from:
Human Kv1.1 expressed in xenopus oocytes: Zerr et al., J Neurosci 18, 2842, 2848, 1998
Vhalf = -28.8 +- 2.3 mV; k = 8.1+- 0.9 mV

The voltage dependency of the rate constants was approximated by:

alpha = ca * exp(-(v+cva)/cka)
beta = cb * exp(-(v+cvb)/ckb)

Parameters ca, cva, cka, cb, cvb, ckb
were determined from least square-fits to experimental data of G/Gmax(v) and tau(v).
Values are defined in the CONSTANT block.
Model includes calculation of Kv gating current

Reference: Akemann et al., Biophys. J. (2009) 96: 3959-3976

Laboratory for Neuronal Circuit Dynamics
RIKEN Brain Science Institute, Wako City, Japan
http://www.neurodynamics.brain.riken.jp

Date of Implementation: April 2007
Contact: akemann@brain.riken.jp

Suffix from Kv1 to Kv1_1

ENDCOMMENT


NEURON {
    THREADSAFE
	SUFFIX Kv1_1
	USEION k READ ek WRITE ik
	NONSPECIFIC_CURRENT i
	RANGE g, gbar, ik, i , igate, nc
	RANGE ninf, taun
	RANGE gateCurrent, gunit
}

UNITS {
	(mV) = (millivolt)
	(mA) = (milliamp)
	(nA) = (nanoamp)
	(pA) = (picoamp)
	(S)  = (siemens)
	(nS) = (nanosiemens)
	(pS) = (picosiemens)
	(um) = (micron)
	(molar) = (1/liter)
	(mM) = (millimolar)		
}

CONSTANT {
	e0 = 1.60217646e-19 (coulombs)
	q10 = 2.7

	ca = 0.12889 (1/ms)
	cva = 45 (mV)
	cka = -33.90877 (mV)

	cb = 0.12889 (1/ms)
      cvb = 45 (mV)
	ckb = 12.42101 (mV) 

	zn = 2.7978 (1)		: valence of n-gate         
}

PARAMETER {
	gateCurrent = 0 (1)	: gating currents ON = 1 OFF = 0
	
	gbar = 0.004 (S/cm2)   <0,1e9>
	gunit = 16 (pS)		: unitary conductance 
}


ASSIGNED {
 	celsius (degC)
	v (mV)	

	ik (mA/cm2)
	i (mA/cm2)
	igate (mA/cm2) 
	ek (mV)
	g  (S/cm2)
	nc (1/cm2)			: membrane density of channel
	
	ninf (1)
	taun (ms)
	alphan (1/ms)
	betan (1/ms)
	qt (1)
}

STATE { n }

INITIAL {
	nc = (1e12) * gbar / gunit
	qt = q10^((celsius-22 (degC))/10 (degC))
	rates(v)
	n = ninf
}

BREAKPOINT {
	SOLVE states METHOD cnexp
      g = gbar * n^4 
	ik = g * (v - ek)
	igate = nc * (1e6) * e0 * 4 * zn * ngateFlip()

	if (gateCurrent != 0) { 
		i = igate
	}
}

DERIVATIVE states {
	rates(v)
	n' = (ninf-n)/taun 
}

PROCEDURE rates(v (mV)) {
	alphan = alphanfkt(v)
	betan = betanfkt(v)
	ninf = alphan/(alphan+betan) 
	taun = 1/(qt*(alphan + betan))       
}

FUNCTION alphanfkt(v (mV)) (1/ms) {
	alphanfkt = ca * exp(-(v+cva)/cka) 
}

FUNCTION betanfkt(v (mV)) (1/ms) {
	betanfkt = cb * exp(-(v+cvb)/ckb)
}

FUNCTION ngateFlip() (1/ms) {
	ngateFlip = (ninf-n)/taun 
}




Loading data, please wait...