Coincident glutamatergic depolarization effects on Cl- dynamics (Lombardi et al, 2021)

 Download zip file 
Help downloading and running models
Accession:266823
"... we used compartmental biophysical models of Cl- dynamics simulating either a simple ball-and-stick topology or a reconstructed CA3 neuron. These computational experiments demonstrated that glutamatergic co-stimulation enhances GABA receptor-mediated Cl- influx at low and attenuates or reverses the Cl- efflux at high initial [Cl-]i. The size of glutamatergic influence on GABAergic Cl--fluxes depends on the conductance, decay kinetics, and localization of glutamatergic inputs. Surprisingly, the glutamatergic shift in GABAergic Cl--fluxes is invariant to latencies between GABAergic and glutamatergic inputs over a substantial interval..."
Reference:
1 . Lombardi A, Jedlicka P, Luhmann HJ, Kilb W (2021) Coincident glutamatergic depolarizations enhance GABAA receptor-dependent Cl- influx in mature and suppress Cl- efflux in immature neurons PLOS Comp Bio
Model Information (Click on a link to find other models with that property)
Model Type: Synapse; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA3 pyramidal GLU cell;
Channel(s):
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Short-term Synaptic Plasticity; Synaptic Plasticity; Chloride regulation;
Implementer(s): Jedlicka, Peter [jedlicka at em.uni-frankfurt.de]; Kilb, Werner [wkilb at uni-mainz.de];
Search NeuronDB for information about:  Hippocampus CA3 pyramidal GLU cell; GabaA; AMPA; NMDA; Gaba; Glutamate;
/
_For Zip -Neuron-Models_AMPA-GABA
Fig8_Real_Cell_Cl_1GDP_Var-Cl-var-tauAMPA
cldif_CA3_NKCC1_HCO3.mod *
gabaA_Cl_HCO3.mod *
vecevent.mod *
Cell1_Cl_HCO3_Pas_fine.hoc *
GDP_Cl_All_short.ses
GDP_Cl_HCO3_All_short.ses *
Single_GDP_gGABA-0.789-nGABA-534_gAMPA-0305_div-TauAMPA_Div_Cl.hoc
Single_GDP_gGABA-0.789-nGABA-534_VDpas_gAMPA-305_div-TauAMPA_Div_Cl.hoc
start_Single_GDP_gGABA-0.789-nGABA-534_gAMPA-0305_div-TauAMPA_Div_Cl.hoc
start_Single_GDP_gGABA-0.789-nGABA-534_VDpas_gAMPA-305_div-TauAMPA_Div_Cl.hoc
                            
{load_file("nrngui.hoc")}
objectvar save_window_, rvp_
objectvar scene_vector_[5]
objectvar ocbox_, ocbox_list_, scene_, scene_list_
{ocbox_list_ = new List()  scene_list_ = new List()}
{pwman_place(972,924,1)}
{
save_window_ = new Graph(0)
save_window_.size(0,5000,-70,-20)
scene_vector_[2] = save_window_
{save_window_.view(0, -70, 5000, 50, 726, 690, 843.3, 200.8)}
graphList[0].append(save_window_)
save_window_.save_name("graphList[0].")
save_window_.addexpr("v(.5)", 1, 1, 0.8, 0.9, 2)
}
{
save_window_ = new Graph(0)
save_window_.size(0,5000,0,50)
scene_vector_[3] = save_window_
{save_window_.view(0, 0, 5000, 50, 720, 360, 850.5, 200.8)}
graphList[2].append(save_window_)
save_window_.save_name("graphList[2].")
save_window_.addexpr("dend_0[0].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[1].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[2].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[3].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[4].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[5].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[6].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[7].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[8].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[9].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[10].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[11].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[12].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[13].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[14].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[15].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[16].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[17].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[18].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[19].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[20].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[21].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[22].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[23].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[24].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[25].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[26].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[27].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[28].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[29].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[30].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[31].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[32].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[33].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[34].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[35].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[36].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[37].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[38].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[39].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[40].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[41].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[42].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[43].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[44].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[45].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[46].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[47].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[48].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[49].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[50].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[51].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[52].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[53].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[54].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend_0[55].cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addvar("soma.v( 0.5 )", 1, 1, 0.8, 0.9, 2)
}
{
xpanel("RunControl", 0)
v_init = -63
xvalue("Init","v_init", 1,"stdinit()", 1, 1 )
xbutton("Init & Run","run()")
xbutton("Stop","stoprun=1")
runStopAt = 5
xvalue("Continue til","runStopAt", 1,"{continuerun(runStopAt) stoprun=1}", 1, 1 )
runStopIn = 1
xvalue("Continue for","runStopIn", 1,"{continuerun(t + runStopIn) stoprun=1}", 1, 1 )
xbutton("Single Step","steprun()")
t = 0
xvalue("t","t", 2 )
tstop = 5000
xvalue("Tstop","tstop", 1,"tstop_changed()", 0, 1 )
dt = 0.01
xvalue("dt","dt", 1,"setdt()", 0, 1 )
steps_per_ms = 1
xvalue("Points plotted/ms","steps_per_ms", 1,"setdt()", 0, 1 )
screen_update_invl = 0.05
xvalue("Scrn update invl","screen_update_invl", 1,"", 0, 1 )
realtime = 0
xvalue("Real Time","realtime", 0,"", 0, 1 )
xpanel(36,183)
}
objectvar scene_vector_[1]
{doNotify()}

Loading data, please wait...