ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/266850.

A model for a nociceptor terminal and terminal tree (Barkai et al., 2020)

 Download zip file 
Help downloading and running models
Accession:266850
This model was used to study how the architecture of the nociceptor terminal tree affects the input-output relation of the primary nociceptive neurons. The model shows that the input-output properties of the nociceptive neurons depend on the length, the axial resistance, and location of individual terminals and that activation of multiple terminals by a capsaicin-like current allows summation of the responses from individual terminals, thus leading to increased nociceptive output.
Reference:
1 . Barkai O, Butterman R, Katz B, Lev S, Binshtok AM (2020) The Input-Output Relation of Primary Nociceptive Neurons is Determined by the Morphology of the Peripheral Nociceptive Terminals. J Neurosci 40:9346-9363 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type:
Brain Region(s)/Organism:
Cell Type(s): Dorsal Root Ganglion (DRG) cell;
Channel(s): I Potassium; I Calcium; I Sodium; I h;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potentials; Axonal Action Potentials; Nociception;
Implementer(s):
Search NeuronDB for information about:  I h; I Sodium; I Calcium; I Potassium;
//Example 1 : stimulating a single terminal with "Capsaicin"		
			load_file("Terminal Proj Main.hoc")
			load_file("Run(Single terminal).ses") //Example 1 - Stimulating a single tarminal


			//The user can also choose which terminals to stimulate by changing Capsaicin_stimulation.hoc
			//load_file("Capsaicin_stimulation.hoc") // puts the electrodes in specific or all terminals	

Loading data, please wait...