ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/266851.

Dendritic Impedance in Neocortical L5 PT neurons (Kelley et al. 2021)

 Download zip file 
Help downloading and running models
Accession:266851
We simulated chirp current stimulation in the apical dendrites of 5 biophysically-detailed multi-compartment models of neocortical pyramidal tract neurons and found that a combination of HCN channels and TASK-like channels produced the best fit to experimental measurements of dendritic impedance. We then explored how HCN and TASK-like channels can shape the dendritic impedance as well as the voltage response to synaptic currents.
Reference:
1 . Kelley C, Dura-Bernal S, Neymotin SA, Antic SD, Carnevale NT, Migliore M, Lytton WW (2021) Effects of Ih and TASK-like shunting current on dendritic impedance in layer 5 pyramidal-tract neurons. J Neurophysiology 125:1501-1516 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex M1 L5B pyramidal pyramidal tract GLU cell;
Channel(s): I h; TASK channel;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python; NetPyNE;
Model Concept(s): Impedance;
Implementer(s): Kelley, Craig;
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex M1 L5B pyramidal pyramidal tract GLU cell; I h; TASK channel;
/
L5PYR_Resonance-master
models
DuraBernal
mod
ar_traub.mod *
cadad.mod *
cadyn.mod *
cagk.mod *
cal_mh.mod *
cal_mig.mod *
can_mig.mod *
canin.mod *
cat_mig.mod *
cat_traub.mod *
catcb.mod *
gabab.mod *
h_BS.mod *
h_harnett.mod
h_kole.mod *
h_migliore.mod *
HCN1.mod *
hin.mod *
IC.mod *
ican_sidi.mod *
IKsin.mod *
kap_BS.mod *
kapcb.mod *
kapin.mod *
kBK.mod *
kctin.mod *
kdmc_BS.mod *
kdr_BS.mod *
kdrin.mod *
MyExp2SynBB.mod *
MyExp2SynNMDABB.mod *
nafx.mod *
nap_sidi.mod *
nax_BS.mod *
savedist.mod *
vecstim.mod *
ghk.inc *
misc.h
parameters.multi *
                            
TITLE Ca-dependent potassium current
:
:   Ca++ dependent K+ current IC responsible for 
:   action potentials AHP's
:   Differential equations
:
:   Model of Yamada, Koch & Adams, in: Methods in Neuronal Modeling,
:   Ed. by Koch & Segev, MIT press, 1989.
:
:   This current models the "fast" IK[Ca]:
:      - potassium current
:      - activated by intracellular calcium
:      - VOLTAGE DEPENDENT
:
:   Written by Alain Destexhe, Salk Institute, Sept 18, 1992
:
: should be considered 'BK' - fast, big conductance

NEURON {
	SUFFIX ikc
	USEION k READ ek WRITE ik
	USEION ca READ cai
        RANGE gkbar, ik
	RANGE m_inf, tau_m
        RANGE taumin
        GLOBAL ascale,bscale,vfctr
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(molar) = (1/liter)
	(mM) = (millimolar)
}

PARAMETER {
	v		(mV)
        celsius         (degC)
	ek		(mV)
        cai             (mM)
	gkbar	= .003	(mho/cm2)	: taken from 
        taumin = 0.1
        ascale = 250.0
        bscale = 0.1
        vfctr = 24.0
}

STATE {
	m
}

INITIAL {
	evaluate_fct(v,cai)
	m = m_inf
}

ASSIGNED {
	ik	(mA/cm2)
	m_inf
	tau_m	(ms)
}

BREAKPOINT { 
	SOLVE states METHOD cnexp
	ik = gkbar * m * (v - ek)
}

DERIVATIVE states { 
	evaluate_fct(v,cai)
	m' = (m_inf - m) / tau_m
}

UNITSOFF
PROCEDURE evaluate_fct(v(mV),cai(mM)) {  LOCAL a,b,tadj
:
:  activation kinetics of Yamada et al were at 22 deg. C
:  transformation to 36 deg assuming Q10=3
:
	tadj = 3 ^ ((celsius-22.0)/10)

	a = ascale * cai * exp(v/vfctr)
	b = bscale * exp(-v/vfctr)

	tau_m = 1.0 / (a + b) / tadj
        if(tau_m < taumin){ tau_m = taumin }
	m_inf = a / (a + b)
}
UNITSON

Loading data, please wait...