Dendritic Impedance in Neocortical L5 PT neurons (Kelley et al. 2021)

 Download zip file 
Help downloading and running models
Accession:266851
We simulated chirp current stimulation in the apical dendrites of 5 biophysically-detailed multi-compartment models of neocortical pyramidal tract neurons and found that a combination of HCN channels and TASK-like channels produced the best fit to experimental measurements of dendritic impedance. We then explored how HCN and TASK-like channels can shape the dendritic impedance as well as the voltage response to synaptic currents.
Reference:
1 . Kelley C, Dura-Bernal S, Neymotin SA, Antic SD, Carnevale NT, Migliore M, Lytton WW (2021) Effects of Ih and TASK-like shunting current on dendritic impedance in layer 5 pyramidal-tract neurons. J Neurophysiology 125:1501-1516 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex M1 L5B pyramidal pyramidal tract GLU cell;
Channel(s): I h; TASK channel;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python; NetPyNE;
Model Concept(s): Impedance;
Implementer(s): Kelley, Craig;
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex M1 L5B pyramidal pyramidal tract GLU cell; I h; TASK channel;
import multiprocessing
from getCells import HayCell
cell = HayCell()
from synUtils import getLagData, getTp, conditionAndTestMulti, conditionAndTestMultiNoSK
import sys

if sys.argv[-1] == '2':
    stim_seg = cell.apic[2](0.5)
    soma_seg = cell.soma[0](0.5)
    weight = 0.125
    start = 200
    factor = 4
    Sc0 = weight / factor
    St0 = weight / (factor*5)
    dSt = weight / (factor*10)
    Tp, _ = getTp(stim_seg, soma_seg, start, Sc0)

    data = getLagData(2, 0.5, Sc0, St0, dSt, start, Tp, 1, '/u/craig/L5PYR_Resonance/timeDomainOutput/HayApic2/')
    data = tuple(data)

elif sys.argv[-1] == '36':
    stim_seg = cell.apic[36](0.8)
    soma_seg = cell.soma[0](0.5)
    weight = 0.065
    start = 200
    factor = 4
    Sc0 = weight / factor
    St0 = weight / (factor*5)
    dSt = weight / (factor*10)
    Tp, _ = getTp(stim_seg, soma_seg, start, Sc0)

    data = getLagData(36, 0.8, Sc0, St0, dSt, start, Tp, 1, '/u/craig/L5PYR_Resonance/timeDomainOutput/HayApic36/')
    data = tuple(data)

elif sys.argv[-1] == '14':
    stim_seg = cell.apic[14](0.5)
    soma_seg = cell.soma[0](0.5)
    weight = 0.14
    start = 200
    factor = 4
    Sc0 = weight / factor
    St0 = weight / (factor*5)
    dSt = weight / (factor*10)
    Tp, _ = getTp(stim_seg, soma_seg, start, Sc0)

    data = getLagData(14, 0.5, Sc0, St0, dSt, start, Tp, 1, '/u/craig/L5PYR_Resonance/timeDomainOutput/HayApic14/')
    data = tuple(data)

elif sys.argv[-1] == '409':
    stim_seg = cell.apic[36](0.14)
    soma_seg = cell.soma[0](0.5)
    weight = 0.075
    start = 200
    factor = 4
    Sc0 = weight / factor
    St0 = weight / (factor*5)
    dSt = weight / (factor*10)
    Tp, _ = getTp(stim_seg, soma_seg, start, Sc0)

    data = getLagData(36, 0.14, Sc0, St0, dSt, start, Tp, 1, '/u/craig/L5PYR_Resonance/timeDomainOutput/HayApic409/')
    data = tuple(data)

elif sys.argv[-1] == '0':
    stim_seg = cell.apic[0](0.5)
    soma_seg = cell.soma[0](0.5)
    weight = 0.065
    start = 200
    factor = 4
    Sc0 = weight / factor
    St0 = weight / (factor*5)
    dSt = weight / (factor*10)
    Tp, _ = getTp(stim_seg, soma_seg, start, Sc0)

    data = getLagData(0, 0.5, Sc0, St0, dSt, start, Tp, 1, '/u/craig/L5PYR_Resonance/timeDomainOutput/HayApic0/')
    data = tuple(data)

if sys.argv[-1] == 'removeSK':
    import os
    if sys.argv[-2] == '2':
        stim_seg = cell.apic[2](0.5)
        soma_seg = cell.soma[0](0.5)
        weight = 0.125
        start = 200
        factor = 4
        Sc0 = weight / factor
        St0 = weight / (factor*5)
        dSt = weight / (factor*10)
        Tp, _ = getTp(stim_seg, soma_seg, start, Sc0)
        os.mkdir('/u/craig/L5PYR_Resonance/timeDomainOutput/NoSK/HayApic2/')
        data = getLagData(2, 0.5, Sc0, St0, dSt, start, Tp, 1, '/u/craig/L5PYR_Resonance/timeDomainOutput/NoSK/HayApic2/')
        data = tuple(data)

    elif sys.argv[-2] == '36':
        stim_seg = cell.apic[36](0.8)
        soma_seg = cell.soma[0](0.5)
        weight = 0.065
        start = 200
        factor = 4
        Sc0 = weight / factor
        St0 = weight / (factor*5)
        dSt = weight / (factor*10)
        Tp, _ = getTp(stim_seg, soma_seg, start, Sc0)
        #os.mkdir('/u/craig/L5PYR_Resonance/timeDomainOutput/NoSK/HayApic36/')
        data = getLagData(36, 0.8, Sc0, St0, dSt, start, Tp, 1, '/u/craig/L5PYR_Resonance/timeDomainOutput/NoSK/HayApic36/')
        data = tuple(data)

    elif sys.argv[-2] == '14':
        stim_seg = cell.apic[14](0.5)
        soma_seg = cell.soma[0](0.5)
        weight = 0.14
        start = 200
        factor = 4
        Sc0 = weight / factor
        St0 = weight / (factor*5)
        dSt = weight / (factor*10)
        Tp, _ = getTp(stim_seg, soma_seg, start, Sc0)
        os.mkdir('/u/craig/L5PYR_Resonance/timeDomainOutput/NoSK/HayApic14/')
        data = getLagData(14, 0.5, Sc0, St0, dSt, start, Tp, 1, '/u/craig/L5PYR_Resonance/timeDomainOutput/NoSK/HayApic14/')
        data = tuple(data)

    elif sys.argv[-2] == '409':
        stim_seg = cell.apic[36](0.14)
        soma_seg = cell.soma[0](0.5)
        weight = 0.075
        start = 200
        factor = 4
        Sc0 = weight / factor
        St0 = weight / (factor*5)
        dSt = weight / (factor*10)
        Tp, _ = getTp(stim_seg, soma_seg, start, Sc0)
        os.mkdir('/u/craig/L5PYR_Resonance/timeDomainOutput/NoSK/HayApic409/')
        data = getLagData(36, 0.14, Sc0, St0, dSt, start, Tp, 1, '/u/craig/L5PYR_Resonance/timeDomainOutput/NoSK/HayApic409/')
        data = tuple(data)

    elif sys.argv[-2] == '0':
        stim_seg = cell.apic[0](0.5)
        soma_seg = cell.soma[0](0.5)
        weight = 0.065
        start = 200
        factor = 4
        Sc0 = weight / factor
        St0 = weight / (factor*5)
        dSt = weight / (factor*10)
        Tp, _ = getTp(stim_seg, soma_seg, start, Sc0)
        os.mkdir('/u/craig/L5PYR_Resonance/timeDomainOutput/NoSK/HayApic0/')
        data = getLagData(0, 0.5, Sc0, St0, dSt, start, Tp, 1, '/u/craig/L5PYR_Resonance/timeDomainOutput/NoSK/HayApic0/')
        data = tuple(data)

# data = (data1 + data2 + data3)

def mp_handler():
    p = multiprocessing.Pool(8)
    if sys.argv[-1] == 'removeSK':
        p.map(conditionAndTestMultiNoSK, data)
    else:
        p.map(conditionAndTestMulti, data)

if __name__ == '__main__':
    mp_handler()

Loading data, please wait...