Dendritic Impedance in Neocortical L5 PT neurons (Kelley et al. accepted)

 Download zip file 
Help downloading and running models
Accession:266851
We simulated chirp current stimulation in the apical dendrites of 5 biophysically-detailed multi-compartment models of neocortical pyramidal tract neurons and found that a combination of HCN channels and TASK-like channels produced the best fit to experimental measurements of dendritic impedance. We then explored how HCN and TASK-like channels can shape the dendritic impedance as well as the voltage response to synaptic currents.
Reference:
1 . Kelley C, Dura-Bernal S, Neymotin SA, Antic SD, Carnevale NT, Migliore M, Lytton WW (2021) Effects of Ih and TASK-like shunting current on dendritic impedance in layer 5 pyramidal-tract neurons. J Neurophysiology (accepted)
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex M1 L5B pyramidal pyramidal tract GLU cell;
Channel(s): I h; TASK channel;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python; NetPyNE;
Model Concept(s): Impedance;
Implementer(s): Kelley, Craig;
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex M1 L5B pyramidal pyramidal tract GLU cell; I h; TASK channel;
/
L5PYR_Resonance-master
models
Kole
h.mod *
Km.mod *
kv.mod *
Kv1.mod *
na.mod *
nax.mod *
cellTemplate.hoc
removeFiles.sh
                            
TITLE Voltage-gated low threshold potassium current from Kv1 subunits

COMMENT

NEURON implementation of a potassium channel from Kv1.1 subunits
Kinetical scheme: Hodgkin-Huxley m^4, no inactivation

Kinetic data taken from: Zerr et al., J.Neurosci. 18 (1998) 2842
Vhalf = -28.8 +/- 2.3 mV; k = 8.1 +/- 0.9 mV

The voltage dependency of the rate constants was approximated by:

alpha = ca * exp(-(v+cva)/cka)
beta = cb * exp(-(v+cvb)/ckb)

Parameters ca, cva, cka, cb, cvb, ckb
are defined in the CONSTANT block.

Laboratory for Neuronal Circuit Dynamics
RIKEN Brain Science Institute, Wako City, Japan
http://www.neurodynamics.brain.riken.jp

Reference: Akemann and Knoepfel, J.Neurosci. 26 (2006) 4602
Date of Implementation: April 2005
Contact: akemann@brain.riken.jp

ENDCOMMENT


NEURON {
	SUFFIX Kv1
	USEION k READ ek WRITE ik
	RANGE gk, gbar, ik
	GLOBAL ninf, taun
}

UNITS {
	(mV) = (millivolt)
	(mA) = (milliamp)
	(nA) = (nanoamp)
	(pA) = (picoamp)
	(S)  = (siemens)
	(nS) = (nanosiemens)
	(pS) = (picosiemens)
	(um) = (micron)
	(molar) = (1/liter)
	(mM) = (millimolar)		
}

CONSTANT {
	q10 = 3

	ca = 0.10 (1/ms) : 0.12889 as original
	cva = 50 (mV)
	cka = -33.90877 (mV)

	cb = 0.12889 (1/ms)
     cvb = 50 (mV)
	ckb = 7.42101 (mV)         
}

PARAMETER {
	v (mV)
	celsius (degC)
	
	gbar = 0.011 (mho/cm2)   <0,1e9>
}


ASSIGNED {
 	ik (mA/cm2) 
	ek (mV)
	gk  (mho/cm2)
	ninf
	taun (ms)
	alphan (1/ms)
	betan (1/ms)
	qt
}

STATE { n }

INITIAL {
	qt = q10^((celsius-22 (degC))/10 (degC))
	rates(v)
	n = ninf
}

BREAKPOINT {
	SOLVE states METHOD cnexp
      gk = gbar * n^4 
	ik = gk * (v - ek)
}

DERIVATIVE states {
	rates(v)
	n' = (ninf-n)/taun 
}

PROCEDURE rates(v (mV)) {
	alphan = alphanfkt(v)
	betan = betanfkt(v)
	ninf = alphan/(alphan+betan) 
	taun = 1/(qt*(alphan + betan))       
}

FUNCTION alphanfkt(v (mV)) (1/ms) {
	alphanfkt = ca * exp(-(v+cva)/cka) 
}

FUNCTION betanfkt(v (mV)) (1/ms) {
	betanfkt = cb * exp(-(v+cvb)/ckb)
}

Loading data, please wait...