Simulations of modulation of HCN channels in L5PCs (Mäki-Marttunen and Mäki-Marttunen, 2022)

 Download zip file 
Help downloading and running models
Accession:267293
"... In this work, we build upon existing biophysically detailed models of thick-tufted layer V pyramidal cells and model the effects of over- and under-expression of Ih channels as well as their neuromodulation by dopamine (gain of Ih function) and acetylcholine (loss of Ih function). We show that Ih channels facilitate the action potentials of layer V pyramidal cells in response to proximal dendritic stimulus while they hinder the action potentials in response to distal dendritic stimulus at the apical dendrite. We also show that the inhibitory action of the Ih channels in layer V pyramidal cells is due to the interactions between Ih channels and a hot zone of low voltage-activated Ca2+ channels at the apical dendrite. Our simulations suggest that a combination of Ih-enhancing neuromodulation at the proximal apical dendrite and Ih-inhibiting modulation at the distal apical dendrite can increase the layer V pyramidal excitability more than any of the two neuromodulators alone..."
Reference:
1 . Mäki-Marttunen T, Mäki-Marttunen V (2022) Excitatory and inhibitory effects of HCN channel modulation on excitability of layer V pyramidal cells Plos Comp Biol [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex layer 5 pyramidal cell;
Channel(s):
Gap Junctions:
Receptor(s): AMPA; NMDA; Gaba;
Gene(s):
Transmitter(s): Acetylcholine; Dopamine; Glutamate; Gaba;
Simulation Environment: NEURON;
Model Concept(s): Neuromodulation;
Implementer(s): Maki-Marttunen, Tuomo [tuomomm at uio.no];
Search NeuronDB for information about:  AMPA; NMDA; Gaba; Acetylcholine; Dopamine; Gaba; Glutamate;
from pylab import *
import scipy.io
import pickle
from os.path import exists
from matplotlib.collections import PatchCollection

def discontlog(ax,x,y,width=18,height=1.05,col='#000000'):
  ax.plot([x-width/2,x+width/2],[y/sqrt(height),y*sqrt(height)],'k-',lw=2.3,clip_on=False,color=col)
  ax.plot([x-width,x+width],[y/height,y*height],'w-',lw=1.0,clip_on=False,zorder=100)
def discontlogopp(ax,x,y,width=18,height=1.05,col='#000000'):
  ax.plot([x-width/2,x+width/2],[y*sqrt(height),y/sqrt(height)],'k-',lw=2.3,clip_on=False,color=col)
  ax.plot([x-width,x+width],[y*height,y/height],'w-',lw=1.0,clip_on=False,zorder=100)


f,axs = subplots(3,3)
axarr = sum([axs[i].tolist() for i in range(0,len(axs))]+[[]])

for iax in range(0,3):
  for iay in range(0,3):
    axs[iay,iax].set_position([0.07+0.32*iax,0.07+0.32*(2-iay),0.26,0.21])
    for tick in axs[iay,iax].xaxis.get_major_ticks() + axs[iay,iax].yaxis.get_major_ticks():
      tick.label.set_fontsize(3.5)
    axs[iay,iax].spines['top'].set_visible(False)
    axs[iay,iax].spines['right'].set_visible(False)
    axs[iay,iax].get_xaxis().tick_bottom()
    axs[iay,iax].get_yaxis().tick_left()
    axs[iay,iax].set_xlim([0,1000])
    axs[iay,iax].set_ylim([2,110])
    if iax == 0:
      axs[iay,iax].set_ylabel('$I$ (nA)',fontsize=6)
    if iay == 2:
      axs[iay,iax].set_xlabel('distance ($\mu$m)',fontsize=6)

Is1 = [1.0, 3.0, 5.0, 7.0, 10.0, 15.0, 20.0, 30.0, 100.0]
Is = [1.0, 3.0, 5.0, 7.0, 10.0, 15.0, 20.0, 30.0, 100.0]

#dists = [50.0, 100.0, 150.0, 200.0, 250.0, 300.0, 350.0, 400.0, 450.0, 500.0, 550.0, 600.0, 650.0, 700.0, 750.0, 800.0, 850.0, 900.0, 950.0, 1000.0]
dists = [100.0,  200.0,  300.0,  400.0,  500.0,  600.0, 700.0, 800.0, 900.0, 1000.0, 1100.0]
Ihcoeffs = [0.0,1.0]
styles = ['bx-','kx-']

additionalblockeds = ['gCa_LVAstbar_Ca_LVAst','gCa_HVAbar_Ca_HVA','gImbar_Im','gK_Pstbar_K_Pst','gK_Tstbar_K_Tst','gNap_Et2bar_Nap_Et2','gSK_E2bar_SK_E2','gSKv3_1bar_SKv3_1','gNaTa_tbar_NaTa_t']
additionalblockedtitles = ['LVA Ca$^{2+}$ channel','HVA Ca$^{2+}$ channel','M-type K$^{+}$ channel','Persistent K$^{+}$ channel','Transient K$^{+}$ channel','Persistent Na$^{+}$ channel','SK channel','Kv3.1 K$^{+}$ channel','Fast Na$^{+}$ channel']
for iblocked in range(0,len(additionalblockeds)):
  #Hay Thresholds, normal
  Ithreshs_all = []
  for iIhcoeff in range(0,len(Ihcoeffs)):
    Ihcoeff = Ihcoeffs[iIhcoeff]
    Ithreshs = []
    dists_saved = []
    for idist in range(0,len(dists)):
      dist = dists[idist]
      filename = '../modulhcn_hay/strongdendthresh'+str(dist)+'_'+additionalblockeds[iblocked]+'_Ihcoeff'+str(Ihcoeff)+'_absbound.sav'
      if not exists(filename):
        print(filename+" does not exist")
        continue
      unpicklefile = open(filename,'rb');unpickledlist = pickle.load(unpicklefile);unpicklefile.close()
      print(filename+" loaded")
      Ithreshs.append(unpickledlist[0][-1])
      dists_saved.append(dist)
    Ithreshs_all.append(Ithreshs[:])
    axarr[iblocked].semilogy(dists_saved, Ithreshs, styles[iIhcoeff],lw=0.5,mew=0.5,ms=2.0)

  axarr[iblocked].set_title(additionalblockedtitles[iblocked],fontsize=6)

discontlogopp(axarr[8],150,85,width=18,height=1.05,col='#000000')
discontlog(axarr[8],0,85,width=18,height=1.05,col='#000000')
f.savefig("figS2.eps")

Loading data, please wait...