ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/3488.

Retinal Ganglion Cell: I-A (Benison et al 2001)

 Download zip file 
Help downloading and running models
Accession:3488
NEURON mod files for the K-A current from the papers: (model) Benison G, Keizer J, Chalupa LM, Robinson DW. Modeling temporal behavior of postnatal cat retinal ganglion cells. J.Theor.Biol. 210:187-199 (2001) and (experiment) Skaliora I, Robinson DW, Scobey RP, Chalupa LM., Properties of K+ conductances in cat retinal ganglion cells during the period of activity-mediated refinements in retinofugal pathways. Eur.J.Neurosci. 7:1558-1568 (1995).
Reference:
1 . Benison G, Keizer J, Chalupa LM, Robinson DW (2001) Modeling temporal behavior of postnatal cat retinal ganglion cells. J Theor Biol 210:187-99 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Channel/Receptor;
Brain Region(s)/Organism:
Cell Type(s): Retina ganglion GLU cell;
Channel(s): I A; I Potassium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Ion Channel Kinetics;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu];
Search NeuronDB for information about:  Retina ganglion GLU cell; I A; I Potassium;
create a
a	{nseg=1 diam=5 L=5 
	insert kargc ek=-85
	insert pas g_pas=1/10000 Ra=150 cm=1}
access a

tstop=100
vlow=-100
vhigh=30
dt=0.01

objref gk, b,gt,vc, gs,c, gf,ic
b = new VBox()
c = new VBox()
b.intercept(1)
gk = new Graph(0)
gk.view(vlow,0,vhigh-vlow,1,0,0,100,200)
gk.exec_menu("New Axis")
gk.exec_menu("10% Zoom out")
gk.label(0.1,0.9,"Fig.9B-9D: steady-states")
gk.addexpr("minf_kargc",3,2, 2*tstop,0,2)
gk.addexpr("hinf_kargc",2,2, 2*tstop,0,2)

gt = new Graph(0)
gt.view(vlow,0,vhigh-vlow,5,0,0,100,200)
gt.exec_menu("New Axis")
gt.exec_menu("10% Zoom out")
gt.label(0.1,0.9,"time constants")
gt.addexpr("mtau_kargc",3,2, 2*tstop,0,2)
gt.addexpr("htau_kargc/5",2,2, 2*tstop,0,2)

xpanel("")
xbutton("run ", "run()")
xpanel()
b.intercept(0)
b.map("K kinetics for RGC",100,0,200,400)

c.intercept(1)
gs = new Graph(0)
gs.view(0,0,tstop,600,0,0,100,200)
gs.exec_menu("New Axis")
gs.exec_menu("10% Zoom out")
gs.label(0.1,0.9,"current (pA), Fig.8B, step from -100mV")
gs.exec_menu("Keep Lines")

c.intercept(0)
c.map("activation",390,0,500,370)

vc = new SEClamp(0.5)

proc run() {
gk.begin()
for (v=vlow; v<vhigh; v=v+1) {
    trates_kargc(v)
    gk.plot(v)
}
gk.flush()
doNotify()

gt.begin()
gt.color(2)
gt.label(0.1,0.75,"tau_inact./5")
gt.color(3)
gt.label(0.15,0.5,"tau_act.")
for (v=vlow; v<vhigh; v=v+1) {
    trates_kargc(v)
    gt.plot(v)
}
gt.flush()
doNotify()


gbar_kargc=0.01
gs.color(2)
gs.label(0.6,0.3,"-30")
gs.color(4)
gs.label(0.6,0.4,"-10")
gs.color(6)
gs.label(0.6,0.5,"10")
gs.color(7)
gs.label(0.6,0.6,"20")

gs.begin()
k=-40
color=1
while (k<21) {
gs.addexpr("ik*area(0.5)*10",color,1, 2*tstop,0,2) // *10=pA, *1e-2=nA
t=0
vc.amp1=-100
vc.dur1=0.2
vc.amp2=k
vc.dur2=tstop
forall {finitialize(vc.amp1)}
while (t<tstop) {
    fadvance()
    gs.plot(t)
    }
gs.flush()
doNotify()
k=k+10
color=color+1
gs.begin()
}
}



Loading data, please wait...