! Integration program for superior & deep basket & axo-axonic cells
! From baskn.f in supergj.f
SUBROUTINE integrate_deepaxax (O, time, numcell, V, curr,
& gAMPA, gNMDA, gGABA_A, Mg, gapcon, totaxgj, gjtable, dt,
& chi,mnaf,mnap,
& hnaf,mkdr,mka,
& hka,mk2,hk2,
& mkm,mkc,mkahp,
& mcat,hcat,mcal,
& mar)
SAVE
integer, parameter:: numcomp = 59 ! should be compat. with calling prog
integer numcell, totaxgj, gjtable(totaxgj,4)
INTEGER J1, I, J, K, L, L1, O, K1
REAL*8 Z, Z1, Z2, curr(numcomp,numcell), c(numcomp)
REAL*8 dt, time, Mg, gapcon
c Usual dt in this program .002 ms
c CINV is 1/C, i.e. inverse capacitance
real*8 v(numcomp,numcell), chi(numcomp,numcell), cinv(numcomp),
x mnaf(numcomp,numcell),mnap(numcomp,numcell),
x hnaf(numcomp,numcell),
x mkdr(numcomp,numcell),
x mka(numcomp,numcell),hka(numcomp,numcell),mk2(numcomp,numcell),
x hk2(numcomp,numcell),mkm(numcomp,numcell),
x mkc(numcomp,numcell),mkahp(numcomp,numcell),
x mcat(numcomp,numcell),hcat(numcomp,numcell),
x mcal(numcomp,numcell),mar(numcomp,numcell),
x jacob(numcomp,numcomp),betchi(numcomp),
x gam(0:numcomp,0:numcomp),gL(numcomp),gnaf(numcomp),
x gnap(numcomp),gkdr(numcomp),gka(numcomp),
x gk2(numcomp),gkm(numcomp),gkc(numcomp),gkahp(numcomp),
x gcat(numcomp),gcaL(numcomp),gar(numcomp),
x cafor(numcomp), ggaba_a(numcomp,numcell),
x gampa(numcomp,numcell),gnmda(numcomp,numcell)
real*8
X alpham_naf(0:640),betam_naf(0:640),dalpham_naf(0:640),
X dbetam_naf(0:640),
X alphah_naf(0:640),betah_naf(0:640),dalphah_naf(0:640),
X dbetah_naf(0:640),
X alpham_kdr(0:640),betam_kdr(0:640),dalpham_kdr(0:640),
X dbetam_kdr(0:640),
X alpham_ka(0:640), betam_ka(0:640),dalpham_ka(0:640) ,
X dbetam_ka(0:640),
X alphah_ka(0:640), betah_ka(0:640), dalphah_ka(0:640),
X dbetah_ka(0:640),
X alpham_k2(0:640), betam_k2(0:640), dalpham_k2(0:640),
X dbetam_k2(0:640),
X alphah_k2(0:640), betah_k2(0:640), dalphah_k2(0:640),
X dbetah_k2(0:640),
X alpham_km(0:640), betam_km(0:640), dalpham_km(0:640),
X dbetam_km(0:640),
X alpham_kc(0:640), betam_kc(0:640), dalpham_kc(0:640),
X dbetam_kc(0:640),
X alpham_cat(0:640),betam_cat(0:640),dalpham_cat(0:640),
X dbetam_cat(0:640),
X alphah_cat(0:640),betah_cat(0:640),dalphah_cat(0:640),
X dbetah_cat(0:640),
X alpham_caL(0:640),betam_caL(0:640),dalpham_caL(0:640),
X dbetam_caL(0:640),
X alpham_ar(0:640), betam_ar(0:640), dalpham_ar(0:640),
X dbetam_ar(0:640)
real*8 vL,vk,vna,var,vca,vgaba_a
INTEGER NEIGH(numcomp,5), NNUM(numcomp)
real*8 fastna_shift
c the f's are the functions giving 1st derivatives for evolution of
c the differential equations for the voltages (v), calcium (chi), and
c other state variables.
real*8 fv(numcomp), fchi(numcomp),fmnaf(numcomp),
x fhnaf(numcomp),fmkdr(numcomp),
x fmka(numcomp),fhka(numcomp),fmk2(numcomp),fhk2(numcomp),
x fmkm(numcomp),fmkc(numcomp),fmkahp(numcomp),
x fmcat(numcomp),fhcat(numcomp),fmcal(numcomp),fmar(numcomp)
c below are for calculating the partial derivatives
real*8 dfv_dv(numcomp,numcomp), dfv_dchi(numcomp),
x dfv_dmnaf(numcomp),
x dfv_dhnaf(numcomp),dfv_dmkdr(numcomp),
x dfv_dmka(numcomp),dfv_dhka(numcomp),
x dfv_dmk2(numcomp),dfv_dhk2(numcomp),
x dfv_dmkm(numcomp),dfv_dmkc(numcomp),
x dfv_dmkahp(numcomp),dfv_dmcat(numcomp),
x dfv_dhcat(numcomp),dfv_dmcal(numcomp),
x dfv_dmar(numcomp)
real*8 dfchi_dv(numcomp), dfchi_dchi(numcomp),
x dfmnaf_dmnaf(numcomp), dfmnaf_dv(numcomp),dfhnaf_dhnaf(numcomp),
x dfhnaf_dv(numcomp),dfmkdr_dmkdr(numcomp),dfmkdr_dv(numcomp),
x dfmka_dmka(numcomp),dfmka_dv(numcomp),
x dfhka_dhka(numcomp),dfhka_dv(numcomp),
x dfmk2_dmk2(numcomp),dfmk2_dv(numcomp),
x dfhk2_dhk2(numcomp),dfhk2_dv(numcomp),
x dfmkm_dmkm(numcomp),dfmkm_dv(numcomp),
x dfmkc_dmkc(numcomp),dfmkc_dv(numcomp),
x dfmcat_dmcat(numcomp),dfmcat_dv(numcomp),dfhcat_dhcat(numcomp),
x dfhcat_dv(numcomp),dfmcal_dmcal(numcomp),dfmcal_dv(numcomp),
x dfmar_dmar(numcomp),dfmar_dv(numcomp),dfmkahp_dchi(numcomp),
x dfmkahp_dmkahp(numcomp), dt2
INTEGER K0
REAL*8 OPEN(numcomp),gamma(numcomp),gamma_prime(numcomp)
c gamma is function of chi used in calculating KC conductance
REAL*8 alpham_ahp(numcomp), alpham_ahp_prime(numcomp)
REAL*8 gna_tot(numcomp),gk_tot(numcomp),gca_tot(numcomp)
REAL*8 gca_high(numcomp), gar_tot(numcomp)
c this will be gCa conductance corresponding to high-thresh channels
REAL*8 A, BB1, BB2
c do initialization on 1st time step
if (O.eq.1) then
c Program fnmda assumes A, BB1, BB2 defined in calling program
c as follows:
A = DEXP(-2.847d0)
BB1 = DEXP(-.693d0)
BB2 = DEXP(-3.101d0)
CALL DEEPAXAX_SETUP
X (alpham_naf, betam_naf, dalpham_naf, dbetam_naf,
X alphah_naf, betah_naf, dalphah_naf, dbetah_naf,
X alpham_kdr, betam_kdr, dalpham_kdr, dbetam_kdr,
X alpham_ka , betam_ka , dalpham_ka , dbetam_ka ,
X alphah_ka , betah_ka , dalphah_ka , dbetah_ka ,
X alpham_k2 , betam_k2 , dalpham_k2 , dbetam_k2 ,
X alphah_k2 , betah_k2 , dalphah_k2 , dbetah_k2 ,
X alpham_km , betam_km , dalpham_km , dbetam_km ,
X alpham_kc , betam_kc , dalpham_kc , dbetam_kc ,
X alpham_cat, betam_cat, dalpham_cat, dbetam_cat,
X alphah_cat, betah_cat, dalphah_cat, dbetah_cat,
X alpham_caL, betam_caL, dalpham_caL, dbetam_caL,
X alpham_ar , betam_ar , dalpham_ar , dbetam_ar)
CALL DEEPAXAXMAJ (GL,GAM,GKDR,GKA,GKC,GKAHP,GK2,GKM,
X GCAT,GCAL,GNAF,GNAP,GAR,
X CAFOR,JACOB,C,BETCHI,NEIGH,NNUM)
do i = 1, 59
cinv(i) = 1.d0 / c(i)
end do
C IN MILLIMOLAR
VL = -65.d0
VK = -100.d0
VNA = 50.d0
VCA = 125.d0
VAR = -40.d0
VGABA_A = -75.d0
c ? initialize membrane state variables?
do L = 1, numcell
do i = 1, numcomp
v(i,L) = VL
chi(i,L) = 0.d0
mnaf(i,L) = 0.d0
mkdr(i,L) = 0.d0
mk2(i,L) = 0.d0
mkm(i,L) = 0.d0
mkc(i,L) = 0.d0
mkahp(i,L) = 0.d0
mcat(i,L) = 0.d0
mcal(i,L) = 0.d0
mar(i,L) = 0.d0
k1 = idnint (4.d0 * (vL + 120.d0))
hnaf(i,L) = alphah_naf(k1)/(alphah_naf(k1)+betah_naf(k1))
hka(i,L) = alphah_ka(k1)/(alphah_ka(k1)+betah_ka(k1))
hk2(i,L) = alphah_k2(k1)/(alphah_k2(k1)+betah_k2(k1))
hcat(i,L)=alphah_cat(k1)/(alphah_cat(k1)+betah_cat(k1))
end do
end do
do i = 1, numcomp
gnap(i) = 0.d0
gk2(i) = 0.d0
gkm(i) = 0.d0
gkahp(i) = 0.d0
gcat(i) = 0.d0
gar(i) = 0.d0
open(i) = 0.d0
end do
c End initialization
endif
do L = 1, numcell
DO I = 1, numcomp
FV(I) = -GL(I) * (V(I,L) - VL) * cinv(i)
c DO 302, J = 1, NNUM(I)
DO J = 1, NNUM(I)
K = NEIGH(I,J)
302 FV(I) = FV(I) + GAM(I,K) * (V(K,L) - V(I,L)) * cinv(i)
END DO
END DO
301 CONTINUE
CALL FNMDA (V, OPEN, numcell, numcomp, MG, L,
& A, BB1, BB2)
DO i = 1, numcomp
421 FV(I) = FV(I) + ( CURR(I,L)
X - (gampa(I,L) + open(i) * gnmda(I,L))*V(I,L)
X - ggaba_a(I,L)*(V(I,L)-Vgaba_a) ) * cinv(i)
END DO
c above assumes equil. potential for AMPA & NMDA = 0 mV
do m = 1, totaxgj
if (gjtable(m,1).eq.L) then
L1 = gjtable(m,3)
igap1 = gjtable(m,2)
igap2 = gjtable(m,4)
fv(igap1) = fv(igap1) + gapcon *
& (v(igap2,L1) - v(igap1,L)) * cinv(igap1)
else if (gjtable(m,3).eq.L) then
L1 = gjtable(m,1)
igap1 = gjtable(m,4)
igap2 = gjtable(m,2)
fv(igap1) = fv(igap1) + gapcon *
& (v(igap2,L1) - v(igap1,L)) * cinv(igap1)
endif
end do ! do m
c do i = 1, ngap_FS(L) ! obsolete gj code
c L1 = list_gap_FS(L,i)
c fv(dendsite) = fv(dendsite) + gapconid_FS *
c & (vdgap_global_FS(L1) - v(dendsite,L)) * cinv(dendsite)
c end do ! obsolete gj code
do i = 1, numcomp
gamma(i) = dmin1 (1.d0, .004d0 * chi(i,L))
if (chi(i,L).le.250.d0) then
gamma_prime(i) = .004d0
else
gamma_prime(i) = 0.d0
endif
end do
c DO 88, I = 1, numcomp
DO I = 1, numcomp
gna_tot(i) = gnaf(i) * (mnaf(i,L)**3) * hnaf(i,L) +
x gnap(i) * (mnaf(i,L)**3)
gk_tot(i) = gkdr(i) * (mkdr(i,L)**4) +
x gka(i) * (mka(i,L)**4) * hka(i,L) +
x gk2(i) * mk2(i,L) * hk2(i,L) +
x gkm(i) * mkm(i,L) +
x gkc(i) * mkc(i,L) * gamma(i) +
x gkahp(i)* mkahp(i,L)
gca_tot(i) = gcat(i) * (mcat(i,L)**2) * hcat(i,L) +
x gcaL(i) * (mcaL(i,L)**2)
gca_high(i) =
x gcaL(i) * (mcaL(i,L)**2)
gar_tot(i) = gar(i) * mar(i,L)
88 FV(I) = FV(I) - ( gna_tot(i) * (v(i,L) - vna)
X + gk_tot(i) * (v(i,L) - vK)
X + gca_tot(i) * (v(i,L) - vCa)
X + gar_tot(i) * (v(i,L) - var) ) * cinv(i)
END DO
do i = 1, numcomp
do j = 1, numcomp
if (i.ne.j) then
dfv_dv(i,j) = jacob(i,j)
else
dfv_dv(i,j) = jacob(i,i) - cinv(i) *
X (gna_tot(i) + gk_tot(i) + gca_tot(i) + gar_tot(i)
X + ggaba_a(i,L) + gampa(i,L)
X + open(i) * gnmda(I,L) )
endif
end do
end do
do i = 1, numcomp
dfv_dchi(i) = - cinv(i) * gkc(i) * mkc(i,L) *
x gamma_prime(i) * (v(i,L)-vK)
dfv_dmnaf(i) = -3.d0 * cinv(i) * (mnaf(i,L)**2) *
X (gnaf(i) * hnaf(i,L) + gnap(i)) * (v(i,L) - vna)
dfv_dhnaf(i) = - cinv(i) * gnaf(i) * (mnaf(i,L)**3) *
X (v(i,L) - vna)
dfv_dmkdr(i) = -4.d0 * cinv(i)*gkdr(i) * (mkdr(i,L)**3)
X * (v(i,L) - vK)
dfv_dmka(i) = -4.d0 * cinv(i)*gka(i) * (mka(i,L)**3) *
X hka(i,L) * (v(i,L) - vK)
dfv_dhka(i) = - cinv(i) * gka(i) * (mka(i,L)**4) *
X (v(i,L) - vK)
dfv_dmk2(i) = - cinv(i)*gk2(i) * hk2(i,L) * (v(i,L)-vK)
dfv_dhk2(i) = - cinv(i)*gk2(i) * mk2(i,L) * (v(i,L)-vK)
dfv_dmkm(i) = - cinv(i)*gkm(i) * (v(i,L) - vK)
dfv_dmkc(i) = - cinv(i)*gkc(i) * gamma(i) * (v(i,L)-vK)
dfv_dmkahp(i)= - cinv(i)*gkahp(i) * (v(i,L) - vK)
dfv_dmcat(i) = -2.d0 * cinv(i) * gcat(i) * mcat(i,L) *
X hcat(i,L) * (v(i,L) - vCa)
dfv_dhcat(i) = - cinv(i) * gcat(i) * (mcat(i,L)**2) *
X (v(i,L) - vCa)
dfv_dmcal(i) = -2.d0 * cinv(i) * gcal(i) * mcal(i,L) *
X (v(i,L) - vCa)
dfv_dmar(i) = - cinv(i) * gar(i) * (v(i,L) - var)
end do
do i = 1, numcomp
fchi(i) = - cafor(i) * gca_high(i) * (v(i,L) - vca)
x - betchi(i) * chi(i,L)
dfchi_dv(i) = - cafor(i) * gca_high(i)
dfchi_dchi(i) = - betchi(i)
end do
do i = 1, numcomp
alpham_ahp(i) = dmin1(0.2d-4 * chi(i,L),0.01d0)
if (chi(i,L).le.500.d0) then
alpham_ahp_prime(i) = 0.2d-4
else
alpham_ahp_prime(i) = 0.d0
endif
end do
do i = 1, numcomp
fmkahp(i) = alpham_ahp(i) * (1.d0 - mkahp(i,L))
x -.001d0 * mkahp(i,L)
dfmkahp_dmkahp(i) = - alpham_ahp(i) - .001d0
dfmkahp_dchi(i) = alpham_ahp_prime(i) *
x (1.d0 - mkahp(i,L))
end do
do i = 1, numcomp
K1 = IDNINT ( 4.d0 * (V(I,L) + 120.d0) )
IF (K1.GT.640) K1 = 640
IF (K1.LT. 0) K1 = 0
fastNa_shift = -2.5d0
K0 = IDNINT ( 4.d0 * (V(I,L)+ fastNa_shift+ 120.d0) )
IF (K0.GT.640) K0 = 640
IF (K0.LT. 0) K0 = 0
fmnaf(i) = alpham_naf(k0) * (1.d0 - mnaf(i,L)) -
X betam_naf(k0) * mnaf(i,L)
fhnaf(i) = alphah_naf(k1) * (1.d0 - hnaf(i,L)) -
X betah_naf(k1) * hnaf(i,L)
fmkdr(i) = alpham_kdr(k1) * (1.d0 - mkdr(i,L)) -
X betam_kdr(k1) * mkdr(i,L)
fmka(i) = alpham_ka (k1) * (1.d0 - mka(i,L)) -
X betam_ka (k1) * mka(i,L)
fhka(i) = alphah_ka (k1) * (1.d0 - hka(i,L)) -
X betah_ka (k1) * hka(i,L)
fmk2(i) = alpham_k2 (k1) * (1.d0 - mk2(i,L)) -
X betam_k2 (k1) * mk2(i,L)
fhk2(i) = alphah_k2 (k1) * (1.d0 - hk2(i,L)) -
X betah_k2 (k1) * hk2(i,L)
fmkm(i) = alpham_km (k1) * (1.d0 - mkm(i,L)) -
X betam_km (k1) * mkm(i,L)
fmkc(i) = alpham_kc (k1) * (1.d0 - mkc(i,L)) -
X betam_kc (k1) * mkc(i,L)
fmcat(i) = alpham_cat(k1) * (1.d0 - mcat(i,L)) -
X betam_cat(k1) * mcat(i,L)
fhcat(i) = alphah_cat(k1) * (1.d0 - hcat(i,L)) -
X betah_cat(k1) * hcat(i,L)
fmcaL(i) = alpham_caL(k1) * (1.d0 - mcaL(i,L)) -
X betam_caL(k1) * mcaL(i,L)
fmar(i) = alpham_ar (k1) * (1.d0 - mar(i,L)) -
X betam_ar (k1) * mar(i,L)
dfmnaf_dv(i) = dalpham_naf(k0) * (1.d0 - mnaf(i,L)) -
X dbetam_naf(k0) * mnaf(i,L)
dfhnaf_dv(i) = dalphah_naf(k1) * (1.d0 - hnaf(i,L)) -
X dbetah_naf(k1) * hnaf(i,L)
dfmkdr_dv(i) = dalpham_kdr(k1) * (1.d0 - mkdr(i,L)) -
X dbetam_kdr(k1) * mkdr(i,L)
dfmka_dv(i) = dalpham_ka(k1) * (1.d0 - mka(i,L)) -
X dbetam_ka(k1) * mka(i,L)
dfhka_dv(i) = dalphah_ka(k1) * (1.d0 - hka(i,L)) -
X dbetah_ka(k1) * hka(i,L)
dfmk2_dv(i) = dalpham_k2(k1) * (1.d0 - mk2(i,L)) -
X dbetam_k2(k1) * mk2(i,L)
dfhk2_dv(i) = dalphah_k2(k1) * (1.d0 - hk2(i,L)) -
X dbetah_k2(k1) * hk2(i,L)
dfmkm_dv(i) = dalpham_km(k1) * (1.d0 - mkm(i,L)) -
X dbetam_km(k1) * mkm(i,L)
dfmkc_dv(i) = dalpham_kc(k1) * (1.d0 - mkc(i,L)) -
X dbetam_kc(k1) * mkc(i,L)
dfmcat_dv(i) = dalpham_cat(k1) * (1.d0 - mcat(i,L)) -
X dbetam_cat(k1) * mcat(i,L)
dfhcat_dv(i) = dalphah_cat(k1) * (1.d0 - hcat(i,L)) -
X dbetah_cat(k1) * hcat(i,L)
dfmcaL_dv(i) = dalpham_caL(k1) * (1.d0 - mcaL(i,L)) -
X dbetam_caL(k1) * mcaL(i,L)
dfmar_dv(i) = dalpham_ar(k1) * (1.d0 - mar(i,L)) -
X dbetam_ar(k1) * mar(i,L)
dfmnaf_dmnaf(i) = - alpham_naf(k0) - betam_naf(k0)
dfhnaf_dhnaf(i) = - alphah_naf(k1) - betah_naf(k1)
dfmkdr_dmkdr(i) = - alpham_kdr(k1) - betam_kdr(k1)
dfmka_dmka(i) = - alpham_ka (k1) - betam_ka (k1)
dfhka_dhka(i) = - alphah_ka (k1) - betah_ka (k1)
dfmk2_dmk2(i) = - alpham_k2 (k1) - betam_k2 (k1)
dfhk2_dhk2(i) = - alphah_k2 (k1) - betah_k2 (k1)
dfmkm_dmkm(i) = - alpham_km (k1) - betam_km (k1)
dfmkc_dmkc(i) = - alpham_kc (k1) - betam_kc (k1)
dfmcat_dmcat(i) = - alpham_cat(k1) - betam_cat(k1)
dfhcat_dhcat(i) = - alphah_cat(k1) - betah_cat(k1)
dfmcaL_dmcaL(i) = - alpham_caL(k1) - betam_caL(k1)
dfmar_dmar(i) = - alpham_ar (k1) - betam_ar (k1)
end do
dt2 = 0.5d0 * dt * dt
do i = 1, numcomp
v(i,L) = v(i,L) + dt * fv(i)
do j = 1, numcomp
v(i,L) = v(i,L) + dt2 * dfv_dv(i,j) * fv(j)
end do
v(i,L) = v(i,L) + dt2 * ( dfv_dchi(i) * fchi(i)
X + dfv_dmnaf(i) * fmnaf(i)
X + dfv_dhnaf(i) * fhnaf(i)
X + dfv_dmkdr(i) * fmkdr(i)
X + dfv_dmka(i) * fmka(i)
X + dfv_dhka(i) * fhka(i)
X + dfv_dmk2(i) * fmk2(i)
X + dfv_dhk2(i) * fhk2(i)
X + dfv_dmkm(i) * fmkm(i)
X + dfv_dmkc(i) * fmkc(i)
X + dfv_dmkahp(i)* fmkahp(i)
X + dfv_dmcat(i) * fmcat(i)
X + dfv_dhcat(i) * fhcat(i)
X + dfv_dmcaL(i) * fmcaL(i)
X + dfv_dmar(i) * fmar(i) )
chi(i,L) = chi(i,L) + dt * fchi(i) + dt2 *
X (dfchi_dchi(i) * fchi(i) + dfchi_dv(i) * fv(i))
mnaf(i,L) = mnaf(i,L) + dt * fmnaf(i) + dt2 *
X (dfmnaf_dmnaf(i) * fmnaf(i) + dfmnaf_dv(i)*fv(i))
hnaf(i,L) = hnaf(i,L) + dt * fhnaf(i) + dt2 *
X (dfhnaf_dhnaf(i) * fhnaf(i) + dfhnaf_dv(i)*fv(i))
mkdr(i,L) = mkdr(i,L) + dt * fmkdr(i) + dt2 *
X (dfmkdr_dmkdr(i) * fmkdr(i) + dfmkdr_dv(i)*fv(i))
mka(i,L) = mka(i,L) + dt * fmka(i) + dt2 *
X (dfmka_dmka(i) * fmka(i) + dfmka_dv(i) * fv(i))
hka(i,L) = hka(i,L) + dt * fhka(i) + dt2 *
X (dfhka_dhka(i) * fhka(i) + dfhka_dv(i) * fv(i))
mk2(i,L) = mk2(i,L) + dt * fmk2(i) + dt2 *
X (dfmk2_dmk2(i) * fmk2(i) + dfmk2_dv(i) * fv(i))
hk2(i,L) = hk2(i,L) + dt * fhk2(i) + dt2 *
X (dfhk2_dhk2(i) * fhk2(i) + dfhk2_dv(i) * fv(i))
mkm(i,L) = mkm(i,L) + dt * fmkm(i) + dt2 *
X (dfmkm_dmkm(i) * fmkm(i) + dfmkm_dv(i) * fv(i))
mkc(i,L) = mkc(i,L) + dt * fmkc(i) + dt2 *
X (dfmkc_dmkc(i) * fmkc(i) + dfmkc_dv(i) * fv(i))
mkahp(i,L) = mkahp(i,L) + dt * fmkahp(i) + dt2 *
X (dfmkahp_dmkahp(i)*fmkahp(i) + dfmkahp_dchi(i)*fchi(i))
mcat(i,L) = mcat(i,L) + dt * fmcat(i) + dt2 *
X (dfmcat_dmcat(i) * fmcat(i) + dfmcat_dv(i) * fv(i))
hcat(i,L) = hcat(i,L) + dt * fhcat(i) + dt2 *
X (dfhcat_dhcat(i) * fhcat(i) + dfhcat_dv(i) * fv(i))
mcaL(i,L) = mcaL(i,L) + dt * fmcaL(i) + dt2 *
X (dfmcaL_dmcaL(i) * fmcaL(i) + dfmcaL_dv(i) * fv(i))
mar(i,L) = mar(i,L) + dt * fmar(i) + dt2 *
X (dfmar_dmar(i) * fmar(i) + dfmar_dv(i) * fv(i))
end do
end do
2001 CONTINUE
1000 CONTINUE
END
C SETS UP TABLES FOR RATE FUNCTIONS
SUBROUTINE DEEPAXAX_SETUP
X (alpham_naf, betam_naf, dalpham_naf, dbetam_naf,
X alphah_naf, betah_naf, dalphah_naf, dbetah_naf,
X alpham_kdr, betam_kdr, dalpham_kdr, dbetam_kdr,
X alpham_ka , betam_ka , dalpham_ka , dbetam_ka ,
X alphah_ka , betah_ka , dalphah_ka , dbetah_ka ,
X alpham_k2 , betam_k2 , dalpham_k2 , dbetam_k2 ,
X alphah_k2 , betah_k2 , dalphah_k2 , dbetah_k2 ,
X alpham_km , betam_km , dalpham_km , dbetam_km ,
X alpham_kc , betam_kc , dalpham_kc , dbetam_kc ,
X alpham_cat, betam_cat, dalpham_cat, dbetam_cat,
X alphah_cat, betah_cat, dalphah_cat, dbetah_cat,
X alpham_caL, betam_caL, dalpham_caL, dbetam_caL,
X alpham_ar , betam_ar , dalpham_ar , dbetam_ar)
INTEGER I,J,K
real*8 minf, hinf, taum, tauh, V, Z, shift_hnaf,
X shift_mkdr,
X alpham_naf(0:640),betam_naf(0:640),dalpham_naf(0:640),
X dbetam_naf(0:640),
X alphah_naf(0:640),betah_naf(0:640),dalphah_naf(0:640),
X dbetah_naf(0:640),
X alpham_kdr(0:640),betam_kdr(0:640),dalpham_kdr(0:640),
X dbetam_kdr(0:640),
X alpham_ka(0:640), betam_ka(0:640),dalpham_ka(0:640) ,
X dbetam_ka(0:640),
X alphah_ka(0:640), betah_ka(0:640), dalphah_ka(0:640),
X dbetah_ka(0:640),
X alpham_k2(0:640), betam_k2(0:640), dalpham_k2(0:640),
X dbetam_k2(0:640),
X alphah_k2(0:640), betah_k2(0:640), dalphah_k2(0:640),
X dbetah_k2(0:640),
X alpham_km(0:640), betam_km(0:640), dalpham_km(0:640),
X dbetam_km(0:640),
X alpham_kc(0:640), betam_kc(0:640), dalpham_kc(0:640),
X dbetam_kc(0:640),
X alpham_cat(0:640),betam_cat(0:640),dalpham_cat(0:640),
X dbetam_cat(0:640),
X alphah_cat(0:640),betah_cat(0:640),dalphah_cat(0:640),
X dbetah_cat(0:640),
X alpham_caL(0:640),betam_caL(0:640),dalpham_caL(0:640),
X dbetam_caL(0:640),
X alpham_ar(0:640), betam_ar(0:640), dalpham_ar(0:640),
X dbetam_ar(0:640)
C FOR VOLTAGE, RANGE IS -120 TO +40 MV (absol.), 0.25 MV RESOLUTION
DO 1, I = 0, 640
V = dble (I)
V = (V / 4.d0) - 120.d0
c gNa
minf = 1.d0/(1.d0 + dexp((-V-38.d0)/10.d0))
if (v.le.-30.d0) then
taum = .0125d0 + .1525d0*dexp((v+30.d0)/10.d0)
else
taum = .02d0 + .145d0*dexp((-v-30.d0)/10.d0)
endif
c from interneuron data, Martina & Jonas 1997, tau x 0.5
alpham_naf(i) = minf / taum
betam_naf(i) = 1.d0/taum - alpham_naf(i)
shift_hnaf = 0.d0
hinf = 1.d0/(1.d0 +
x dexp((v + shift_hnaf + 58.3d0)/6.7d0))
tauh = 0.225d0 + 1.125d0/(1.d0+dexp((v+37.d0)/15.d0))
c from interneuron data, Martina & Jonas 1997, tau x 0.5
alphah_naf(i) = hinf / tauh
betah_naf(i) = 1.d0/tauh - alphah_naf(i)
shift_mkdr = 0.d0
c delayed rectifier, non-inactivating
minf = 1.d0/(1.d0+dexp((-v-shift_mkdr-27.d0)/11.5d0))
if (v.le.-10.d0) then
taum = .25d0 + 4.35d0*dexp((v+10.d0)/10.d0)
else
taum = .25d0 + 4.35d0*dexp((-v-10.d0)/10.d0)
endif
alpham_kdr(i) = minf / taum
betam_kdr(i) = 1.d0 /taum - alpham_kdr(i)
c from Martina, Schultz et al., 1998
c A current: Huguenard & McCormick 1992, J Neurophysiol (TCR)
minf = 1.d0/(1.d0 + dexp((-v-60.d0)/8.5d0))
hinf = 1.d0/(1.d0 + dexp((v+78.d0)/6.d0))
taum = .185d0 + .5d0/(dexp((v+35.8d0)/19.7d0) +
x dexp((-v-79.7d0)/12.7d0))
if (v.le.-63.d0) then
tauh = .5d0/(dexp((v+46.d0)/5.d0) +
x dexp((-v-238.d0)/37.5d0))
else
tauh = 9.5d0
endif
alpham_ka(i) = minf/taum
betam_ka(i) = 1.d0 / taum - alpham_ka(i)
alphah_ka(i) = hinf / tauh
betah_ka(i) = 1.d0 / tauh - alphah_ka(i)
c h-current (anomalous rectifier), Huguenard & McCormick, 1992
minf = 1.d0/(1.d0 + dexp((v+75.d0)/5.5d0))
taum = 1.d0/(dexp(-14.6d0 -0.086d0*v) +
x dexp(-1.87 + 0.07d0*v))
alpham_ar(i) = minf / taum
betam_ar(i) = 1.d0 / taum - alpham_ar(i)
c K2 K-current, McCormick & Huguenard
minf = 1.d0/(1.d0 + dexp((-v-10.d0)/17.d0))
hinf = 1.d0/(1.d0 + dexp((v+58.d0)/10.6d0))
taum = 4.95d0 + 0.5d0/(dexp((v-81.d0)/25.6d0) +
x dexp((-v-132.d0)/18.d0))
tauh = 60.d0 + 0.5d0/(dexp((v-1.33d0)/200.d0) +
x dexp((-v-130.d0)/7.1d0))
alpham_k2(i) = minf / taum
betam_k2(i) = 1.d0/taum - alpham_k2(i)
alphah_k2(i) = hinf / tauh
betah_k2(i) = 1.d0 / tauh - alphah_k2(i)
c voltage part of C-current, using 1994 kinetics, shift 60 mV
if (v.le.-10.d0) then
alpham_kc(i) = (2.d0/37.95d0)*dexp((v+50.d0)/11.d0 -
x (v+53.5)/27.d0)
betam_kc(i) = 2.d0*dexp((-v-53.5d0)/27.d0)-alpham_kc(i)
else
alpham_kc(i) = 2.d0*dexp((-v-53.5d0)/27.d0)
betam_kc(i) = 0.d0
endif
c Speed-up of C kinetics here.
alpham_kc(i) = 2.d0 * alpham_kc(i)
betam_kc(i) = 2.d0 * betam_kc(i)
c high-threshold gCa, from 1994, with 60 mV shift & no inactivn.
alpham_cal(i) = 1.6d0/(1.d0+dexp(-.072d0*(v-5.d0)))
betam_cal(i) = 0.1d0 * ((v+8.9d0)/5.d0) /
x (dexp((v+8.9d0)/5.d0) - 1.d0)
c M-current, from plast.f, with 60 mV shift
alpham_km(i) = .02d0/(1.d0+dexp((-v-20.d0)/5.d0))
betam_km(i) = .01d0 * dexp((-v-43.d0)/18.d0)
c T-current, from Destexhe et al., 1996, pg. 170
minf = 1.d0/(1.d0 + dexp((-v-52.d0)/7.4d0))
hinf = 1.d0/(1.d0 + dexp((v+80.d0)/5.d0))
taum = 1.d0 + .33d0/(dexp((v+27.d0)/10.d0) +
x dexp((-v-102.d0)/15.d0))
tauh = 28.3d0 +.33d0/(dexp((v+48.d0)/4.d0) +
x dexp((-v-407.d0)/50.d0))
alpham_cat(i) = minf / taum
betam_cat(i) = 1.d0/taum - alpham_cat(i)
alphah_cat(i) = hinf / tauh
betah_cat(i) = 1.d0 / tauh - alphah_cat(i)
1 CONTINUE
do 2, i = 0, 639
dalpham_naf(i) = (alpham_naf(i+1)-alpham_naf(i))/.25d0
dbetam_naf(i) = (betam_naf(i+1)-betam_naf(i))/.25d0
dalphah_naf(i) = (alphah_naf(i+1)-alphah_naf(i))/.25d0
dbetah_naf(i) = (betah_naf(i+1)-betah_naf(i))/.25d0
dalpham_kdr(i) = (alpham_kdr(i+1)-alpham_kdr(i))/.25d0
dbetam_kdr(i) = (betam_kdr(i+1)-betam_kdr(i))/.25d0
dalpham_ka(i) = (alpham_ka(i+1)-alpham_ka(i))/.25d0
dbetam_ka(i) = (betam_ka(i+1)-betam_ka(i))/.25d0
dalphah_ka(i) = (alphah_ka(i+1)-alphah_ka(i))/.25d0
dbetah_ka(i) = (betah_ka(i+1)-betah_ka(i))/.25d0
dalpham_k2(i) = (alpham_k2(i+1)-alpham_k2(i))/.25d0
dbetam_k2(i) = (betam_k2(i+1)-betam_k2(i))/.25d0
dalphah_k2(i) = (alphah_k2(i+1)-alphah_k2(i))/.25d0
dbetah_k2(i) = (betah_k2(i+1)-betah_k2(i))/.25d0
dalpham_km(i) = (alpham_km(i+1)-alpham_km(i))/.25d0
dbetam_km(i) = (betam_km(i+1)-betam_km(i))/.25d0
dalpham_kc(i) = (alpham_kc(i+1)-alpham_kc(i))/.25d0
dbetam_kc(i) = (betam_kc(i+1)-betam_kc(i))/.25d0
dalpham_cat(i) = (alpham_cat(i+1)-alpham_cat(i))/.25d0
dbetam_cat(i) = (betam_cat(i+1)-betam_cat(i))/.25d0
dalphah_cat(i) = (alphah_cat(i+1)-alphah_cat(i))/.25d0
dbetah_cat(i) = (betah_cat(i+1)-betah_cat(i))/.25d0
dalpham_caL(i) = (alpham_cal(i+1)-alpham_cal(i))/.25d0
dbetam_caL(i) = (betam_cal(i+1)-betam_cal(i))/.25d0
dalpham_ar(i) = (alpham_ar(i+1)-alpham_ar(i))/.25d0
dbetam_ar(i) = (betam_ar(i+1)-betam_ar(i))/.25d0
2 CONTINUE
do i = 640, 640
dalpham_naf(i) = dalpham_naf(i-1)
dbetam_naf(i) = dbetam_naf(i-1)
dalphah_naf(i) = dalphah_naf(i-1)
dbetah_naf(i) = dbetah_naf(i-1)
dalpham_kdr(i) = dalpham_kdr(i-1)
dbetam_kdr(i) = dbetam_kdr(i-1)
dalpham_ka(i) = dalpham_ka(i-1)
dbetam_ka(i) = dbetam_ka(i-1)
dalphah_ka(i) = dalphah_ka(i-1)
dbetah_ka(i) = dbetah_ka(i-1)
dalpham_k2(i) = dalpham_k2(i-1)
dbetam_k2(i) = dbetam_k2(i-1)
dalphah_k2(i) = dalphah_k2(i-1)
dbetah_k2(i) = dbetah_k2(i-1)
dalpham_km(i) = dalpham_km(i-1)
dbetam_km(i) = dbetam_km(i-1)
dalpham_kc(i) = dalpham_kc(i-1)
dbetam_kc(i) = dbetam_kc(i-1)
dalpham_cat(i) = dalpham_cat(i-1)
dbetam_cat(i) = dbetam_cat(i-1)
dalphah_cat(i) = dalphah_cat(i-1)
dbetah_cat(i) = dbetah_cat(i-1)
dalpham_caL(i) = dalpham_caL(i-1)
dbetam_caL(i) = dbetam_caL(i-1)
dalpham_ar(i) = dalpham_ar(i-1)
dbetam_ar(i) = dbetam_ar(i-1)
end do
END
SUBROUTINE DEEPAXAXMAJ
C BRANCHED ACTIVE DENDRITES
X (GL,GAM,GKDR,GKA,GKC,GKAHP,GK2,GKM,
X GCAT,GCAL,GNAF,GNAP,GAR,
X CAFOR,JACOB,C,BETCHI,NEIGH,NNUM)
c Conductances: leak gL, coupling g, delayed rectifier gKDR, A gKA,
c C gKC, AHP gKAHP, K2 gK2, M gKM, low thresh Ca gCAT, high thresh
c gCAL, fast Na gNAF, persistent Na gNAP, h or anom. rectif. gAR.
c Note VAR = equil. potential for anomalous rectifier.
c Soma = comp. 1; 4 dendrites each with 13 compartments, 6-comp. axon
c Drop "glc"-like terms, just using "gl"-like
c CAFOR corresponds to "phi" in Traub et al., 1994
c Consistent set of units: nF, mV, ms, nA, microS
INTEGER, PARAMETER:: numcomp = 59
REAL*8 C(numcomp),GL(numcomp),GAM(0:numcomp,0:numcomp)
REAL*8 GNAF(numcomp),GCAT(numcomp)
REAL*8 GKDR(numcomp),GKA(numcomp),GKC(numcomp)
REAL*8 GKAHP(numcomp),GCAL(numcomp),GAR(numcomp)
REAL*8 GK2(numcomp),GKM(numcomp),GNAP(numcomp)
REAL*8 JACOB(numcomp,numcomp)
REAL*8 RI_SD,RI_AXON,RM_SD,RM_AXON,CDENS
INTEGER LEVEL(numcomp)
REAL*8 GNAF_DENS(0:9), GCAT_DENS(0:9), GKDR_DENS(0:9)
REAL*8 GKA_DENS(0:9), GKC_DENS(0:9), GKAHP_DENS(0:9)
REAL*8 GCAL_DENS(0:9), GK2_DENS(0:9), GKM_DENS(0:9)
REAL*8 GNAP_DENS(0:9), GAR_DENS(0:9)
REAL*8 RES, RINPUTi, ELEN(numcomp)
REAL*8 RSOMA, PI, BETCHI(numcomp), CAFOR(numcomp)
REAL*8 RAD(numcomp), LEN(numcomp), GAM1, GAM2
REAL*8 RIN, D(numcomp), AREA(numcomp), RI, Z
INTEGER NEIGH(numcomp,5), NNUM(numcomp), i, j, k, it
C FOR ESTABLISHING TOPOLOGY OF COMPARTMENTS
RI_SD = 200.d0
c RM_SD = 50000.d0
RM_SD = 25000.d0
RI_AXON = 100.d0
RM_AXON = 1000.d0
CDENS = 1.d0
PI = 3.14159d0
gnaf_dens(0) = 400.d0
gnaf_dens(1) = 60.d0
gnaf_dens(2) = 60.d0
gnaf_dens(3) = 60.d0
do i = 4, 9
c gnaf_dens(i) = 60.d0
gnaf_dens(i) = 10.d0
end do
gkdr_dens(0) = 400.d0
gkdr_dens(1) = 100.d0
gkdr_dens(2) = 100.d0
gkdr_dens(3) = 100.d0
do i = 4, 9
gkdr_dens(i) = 10.d0
c gkdr_dens(i) = 60.d0
end do
gnap_dens(0) = 0.d0
do i = 1, 9
gnap_dens(i) = 0.01d0 * gnaf_dens(i)
end do
gcat_dens(0) = 0.d0
do i = 1, 3
gcat_dens(i) = 0.05d0
end do
do i = 4, 9
gcat_dens(i) = 2.d0
end do
gcal_dens(0) = 0.d0
do i = 1, 3
c gcal_dens(i) = 0.5d0
gcal_dens(i) = 0.1d0
end do
do i = 4, 9
c gcal_dens(i) = 0.5d0
gcal_dens(i) = 0.2d0
end do
gka_dens(0) = 1.d0
gka_dens(1) = 1.d0
gka_dens(2) = 1.d0
gka_dens(3) = 1.d0
do i = 4, 9
gka_dens(i) = 1.0d0
end do
gkc_dens(0) = 0.d0
do i = 1, 9
c gkc_dens(i) = 10.00d0
gkc_dens(i) = 25.00d0
end do
gkm_dens(0) = 0.d0
do i = 1, 9
gkm_dens(i) = 0.50d0
end do
gk2_dens(0) = .5d0
do i = 1, 9
gk2_dens(i) = 0.50d0
end do
gkahp_dens(0) = 0.d0
do i = 1, 9
gkahp_dens(i) = 0.10d0
end do
gar_dens(0) = 0.d0
do i = 1, 9
gar_dens(i) = 0.025d0
end do
c WRITE (6,9988)
9988 FORMAT(2X,'I',4X,'NADENS',' CADENS(L)',' KDRDEN',' KAHPDE',
X ' KCDENS',' KADENS')
c DO 9989, I = 0, 9
DO I = 0, 9
c WRITE (6,9990) I, gnaf_dens(i), gcaL_dens(i), gkdr_dens(i),
c X gkahp_dens(i), gkc_dens(i), gka_dens(i)
9990 FORMAT(2X,I2,2X,F6.2,1X,F6.2,1X,F6.2,1X,F6.2,1X,F6.2,1X,F6.2)
END DO
9989 CONTINUE
level(1) = 1
do i = 2, 41, 13
level(i) = 2
end do
do i = 3, 42, 13
level(i) = 3
level(i+1) = 3
end do
do i = 5, 44, 13
level(i) = 4
level(i+1) = 4
level(i+2) = 4
end do
do i = 8, 47, 13
level(i) = 5
level(i+1) = 5
level(i+2) = 5
end do
do i = 11, 50, 13
level(i) = 6
level(i+1) = 7
level(i+2) = 8
level(i+3) = 9
end do
do i = 54, 59
level(i) = 0
end do
c connectivity of axon
nnum(54) = 2
nnum(55) = 3
nnum(56) = 3
nnum(58) = 3
nnum(57) = 1
nnum(59) = 1
neigh(54,1) = 1
neigh(54,2) = 55
neigh(55,1) = 54
neigh(55,2) = 56
neigh(55,3) = 58
neigh(56,1) = 55
neigh(56,2) = 57
neigh(56,3) = 58
neigh(58,1) = 55
neigh(58,2) = 56
neigh(58,3) = 59
neigh(57,1) = 56
neigh(59,1) = 58
c connectivity of SD part
nnum(1) = 5
neigh(1,1) = 54
neigh(1,2) = 2
neigh(1,3) = 15
neigh(1,4) = 28
neigh(1,5) = 41
do i = 2, 41, 13
nnum(i) = 3
neigh(i,1) = 1
neigh(i,2) = i + 1
neigh(i,3) = i + 2
end do
do i = 3, 42, 13
nnum(i) = 4
neigh(i,1) = i - 1
neigh(i,2) = i + 1
neigh(i,3) = i + 2
neigh(i,4) = i + 3
end do
do i = 4, 43, 13
nnum(i) = 3
neigh(i,1) = i - 2
neigh(i,2) = i - 1
neigh(i,3) = i + 3
end do
do i = 5, 44, 13
nnum(i) = 3
neigh(i,1) = i - 2
neigh(i,2) = i + 1
neigh(i,3) = i + 3
end do
do i = 6, 45, 13
nnum(i) = 3
neigh(i,1) = i - 3
neigh(i,2) = i - 1
neigh(i,3) = i + 3
end do
do i = 7, 46, 13
nnum(i) = 2
neigh(i,1) = i - 3
neigh(i,2) = i + 3
end do
do i = 8, 47, 13
nnum(i) = 2
neigh(i,1) = i - 3
neigh(i,2) = i + 3
end do
do i = 9, 48, 13
nnum(i) = 1
neigh(i,1) = i - 3
end do
do i = 10, 49, 13
nnum(i) = 1
neigh(i,1) = i - 3
end do
do i = 11, 50, 13
nnum(i) = 2
neigh(i,1) = i - 3
neigh(i,2) = i + 1
end do
do i = 12, 51, 13
nnum(i) = 2
neigh(i,1) = i - 1
neigh(i,2) = i + 1
end do
do i = 13, 52, 13
nnum(i) = 2
neigh(i,1) = i - 1
neigh(i,2) = i + 1
end do
do i = 14, 53, 13
nnum(i) = 1
neigh(i,1) = i - 1
end do
c DO 332, I = 1, 59
DO I = 1, numcomp
c WRITE(6,3330) I, NEIGH(I,1),NEIGH(I,2),NEIGH(I,3),NEIGH(I,4),
c X NEIGH(I,5)
3330 FORMAT(2X,I5,I5,I5,I5,I5,I5)
END DO
332 CONTINUE
c DO 858, I = 1, 59
DO I = 1, 59
c DO 858, J = 1, NNUM(I)
DO J = 1, NNUM(I)
K = NEIGH(I,J)
IT = 0
c DO 859, L = 1, NNUM(K)
DO L = 1, NNUM(K)
IF (NEIGH(K,L).EQ.I) IT = 1
END DO
859 CONTINUE
IF (IT.EQ.0) THEN
c WRITE(6,8591) I, K
8591 FORMAT(' ASYMMETRY IN NEIGH MATRIX ',I4,I4)
ENDIF
END DO
END DO
858 CONTINUE
c length and radius of axonal compartments
do i = 54, 59
len(i) = 50.d0
end do
c rad(54) = 0.80d0
c rad(55) = 0.7d0
rad(54) = 0.70d0
rad(55) = 0.6d0
do i = 56, 59
rad(i) = 0.5d0
end do
c length and radius of SD compartments
len(1) = 20.d0
rad(1) = 7.5d0
do i = 2, 53
len(i) = 40.d0
end do
rad(2) = 1.06d0
rad(3) = rad(2) / 1.59d0
rad(4) = rad(2) / 1.59d0
rad(5) = rad(2) / 2.53d0
rad(6) = rad(2) / 2.53d0
rad(7) = rad(2) / 1.59d0
rad(8) = rad(2) / 2.53d0
rad(9) = rad(2) / 2.53d0
rad(10) = rad(2) / 1.59d0
rad(11) = rad(2) / 2.53d0
rad(12) = rad(2) / 2.53d0
rad(13) = rad(2) / 2.53d0
rad(14) = rad(2) / 2.53d0
do i = 15, 53
rad(i) = rad(i-13)
end do
c WRITE(6,919)
919 FORMAT('COMPART.',' LEVEL ',' RADIUS ',' LENGTH(MU)')
c DO 920, I = 1, 59
c920 WRITE(6,921) I, LEVEL(I), RAD(I), LEN(I)
921 FORMAT(I3,5X,I2,3X,F6.2,1X,F6.1,2X,F4.3)
c DO 120, I = 1, 59
DO I = 1, numcomp
AREA(I) = 2.d0 * PI * RAD(I) * LEN(I)
C NO CORRECTION FOR CONTRIBUTION OF SPINES TO AREA
K = LEVEL(I)
C(I) = CDENS * AREA(I) * (1.D-8)
if (k.ge.1) then
GL(I) = (1.D-2) * AREA(I) / RM_SD
else
GL(I) = (1.D-2) * AREA(I) / RM_AXON
endif
GNAF(I) = GNAF_DENS(K) * AREA(I) * (1.D-5)
GNAP(I) = GNAP_DENS(K) * AREA(I) * (1.D-5)
GCAT(I) = GCAT_DENS(K) * AREA(I) * (1.D-5)
GKDR(I) = GKDR_DENS(K) * AREA(I) * (1.D-5)
GKA(I) = GKA_DENS(K) * AREA(I) * (1.D-5)
GKC(I) = GKC_DENS(K) * AREA(I) * (1.D-5)
GKAHP(I) = GKAHP_DENS(K) * AREA(I) * (1.D-5)
GCAL(I) = GCAL_DENS(K) * AREA(I) * (1.D-5)
GK2(I) = GK2_DENS(K) * AREA(I) * (1.D-5)
GKM(I) = GKM_DENS(K) * AREA(I) * (1.D-5)
GAR(I) = GAR_DENS(K) * AREA(I) * (1.D-5)
c above conductances should be in microS
END DO
120 continue
Z = 0.d0
c DO 1019, I = 2, 53
DO I = 2, 53
Z = Z + AREA(I)
END DO
1019 CONTINUE
c WRITE(6,1020) Z
1020 FORMAT(2X,' TOTAL DENDRITIC AREA ',F7.0)
c DO 140, I = 1, 59
DO I = 1, numcomp
c DO 140, K = 1, NNUM(I)
DO K = 1, NNUM(I)
J = NEIGH(I,K)
if (level(i).eq.0) then
RI = RI_AXON
else
RI = RI_SD
endif
GAM1 =100.d0 * PI * RAD(I) * RAD(I) / ( RI * LEN(I) )
if (level(j).eq.0) then
RI = RI_AXON
else
RI = RI_SD
endif
GAM2 =100.d0 * PI * RAD(J) * RAD(J) / ( RI * LEN(J) )
GAM(I,J) = 2.d0/( (1.d0/GAM1) + (1.d0/GAM2) )
END DO
END DO
140 CONTINUE
c gam computed in microS
c DO 299, I = 1, 59
DO I = 1, numcomp
299 BETCHI(I) = .05d0
END DO
BETCHI( 1) = .02d0
c DO 300, I = 1, 59
DO I = 1, numcomp
c300 D(I) = 2.D-4
300 D(I) = 1.D-4
END DO
c DO 301, I = 1, 59
DO I = 1, numcomp
c IF (LEVEL(I).EQ.1) D(I) = 5.D-3
IF (LEVEL(I).EQ.1) D(I) = 2.D-4
END DO
301 CONTINUE
C NOTE NOTE NOTE (DIFFERENT FROM SWONG)
c DO 160, I = 1, 59
DO I = 1, numcomp
160 CAFOR(I) = 5200.d0 / (AREA(I) * D(I))
END DO
C NOTE CORRECTION
c do 200, i = 1, 59
do i = 1, numcomp
200 C(I) = 1000.d0 * C(I)
end do
C TO GO FROM MICROF TO NF.
c DO 909, I = 1, 59
DO I = 1, numcomp
JACOB(I,I) = - GL(I)
c DO 909, J = 1, NNUM(I)
DO J = 1, NNUM(I)
K = NEIGH(I,J)
IF (I.EQ.K) THEN
c WRITE(6,510) I
510 FORMAT(' UNEXPECTED SYMMETRY IN NEIGH ',I4)
ENDIF
JACOB(I,K) = GAM(I,K)
JACOB(I,I) = JACOB(I,I) - GAM(I,K)
END DO
END DO
909 CONTINUE
c 15 Jan. 2001: make correction for c(i)
do i = 1, numcomp
do j = 1, numcomp
jacob(i,j) = jacob(i,j) / c(i)
end do
end do
c DO 500, I = 1, 59
DO I = 1, numcomp
c WRITE (6,501) I,C(I)
501 FORMAT(1X,I2,' C(I) = ',F7.4)
END DO
500 CONTINUE
END