Medial vestibular neuron models (Quadroni and Knopfel 1994)

 Download zip file 
Help downloading and running models
The structure and the parameters of the model cells were chosen to reproduce the responses of type A and type B MVNns as described in electrophysiological recordings. The emergence of oscillatory firing under these two specific experimental conditions is consistent with electrophysiological recordings not used during construction of the model. We, therefore, suggest that these models have a high predictive value.
1 . Quadroni R, Knöpfel T (1994) Compartmental models of type A and type B guinea pig medial vestibular neurons. J Neurophysiol 72:1911-24 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Vestibular neuron;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I h;
Gap Junctions:
Receptor(s): NMDA;
Simulation Environment: NEURON;
Model Concept(s): Oscillations; Action Potentials; Calcium dynamics;
Implementer(s): Morse, Tom [Tom.Morse at];
Search NeuronDB for information about:  NMDA; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I h;
// fig2c.hoc

// make sure the nmda receptors are turned off for fig 2
// for cell types A and B

if ( (dendA[3].gbar_nmda(0.5)>0) || (dendB[3].gbar_nmda(0.5) > 0 )) {
	nmda_off()	// can only turn off once otherwise forgets prev value

// record voltages, time

objref somaA_V, somaB_V, tvec

tstop = 50

somaA_V = new Vector(tstop/dt +1)
somaB_V = somaA_V.c
tvec = somaA_V.c




objref g2c

g2c=new Graph()

astart =1838
aend = astart+deltat
bstart = 1825
bend = bstart+deltat

somaA_V.c(astart,aend).line(g2c,dt, 1, 1)
somaB_V.c(bstart,bend).line(g2c,dt, 1, 1)

g2c.exec_menu("Keep Lines")
g2c.exec_menu("View = plot")
g2c.label(.2,.925,"FIG 2 C")

Loading data, please wait...