ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/58582.

Coding of stimulus frequency by latency in thalamic networks (Golomb et al 2005)

 Download zip file 
Help downloading and running models
Accession:58582
The paper presents models of the rat vibrissa processing system including the posterior medial (POm) thalamus, ventroposterior medial (VPm) thalamus, and GABAB- mediated feedback inhibition from the reticular thalamic (Rt) nucleus. A clear match between the experimentally measured spike-rates and the numerically calculated rates for the full model occurs when VPm thalamus receives stronger brainstem input and weaker GABAB-mediated inhibition than POm thalamus.
Reference:
1 . Golomb D, Ahissar E, Kleinfeld D (2006) Coding of stimulus frequency by latency in thalamic networks through the interplay of GABAB-mediated feedback and stimulus shape. J Neurophysiol 95:1735-50 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Thalamus;
Cell Type(s): Thalamus geniculate nucleus/lateral principal GLU cell; Thalamus reticular nucleus GABA cell;
Channel(s):
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: C or C++ program;
Model Concept(s): Simplified Models; Rate-coding model neurons;
Implementer(s): Golomb, David [golomb at bgu.ac.il];
Search NeuronDB for information about:  Thalamus geniculate nucleus/lateral principal GLU cell; Thalamus reticular nucleus GABA cell; GabaA; GabaB; AMPA; Gaba; Glutamate;
ncol=13
colar=12 2 3 4 13 5 6 7 14 8 9 10 11
ult=4 upt=7 ura=8 urb=9 alt=10 apt=11
t_inter=200.0 t_off_ra=3.0 t_off_rb=35.0
nskip=1 average_cycle=2
t_integrate=0.09

Loading data, please wait...