Parallel network simulations with NEURON (Migliore et al 2006)

 Download zip file 
Help downloading and running models
Accession:64229
The NEURON simulation environment has been extended to support parallel network simulations. The performance of three published network models with very different spike patterns exhibits superlinear speedup on Beowulf clusters.
Reference:
1 . Migliore M, Cannia C, Lytton WW, Markram H, Hines ML (2006) Parallel network simulations with NEURON. J Comput Neurosci 21:119-29 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Methods;
Implementer(s): Hines, Michael [Michael.Hines at Yale.edu];
/
netmod
parbulbNet
README *
cadecay.mod *
flushf.mod *
kA.mod *
kca.mod *
kfasttab.mod *
kM.mod *
kslowtab.mod *
lcafixed.mod *
nafast.mod *
nagran.mod *
nmdanet.mod *
bulb.hoc
calcisilag.hoc *
ddi_baseline.gnu *
ddi_baseline.ses *
experiment_ddi_baseline.hoc *
experiment_odour_baseline.hoc *
granule.tem *
init.hoc *
input.hoc *
input1 *
mathslib.hoc *
mitral.tem *
modstat
mosinit.hoc *
odour_baseline.gnu *
odour_baseline.ses *
par_batch1.hoc
par_bulb.hoc
par_calcisilag.hoc
par_experiment_ddi_baseline.hoc
par_granule.tem
par_init.hoc
par_input.hoc
par_mitral.tem
par_netpar.hoc
par_notes
parameters_ddi_baseline.hoc *
parameters_odour_baseline.hoc *
screenshot.png *
tabchannels.dat *
tabchannels.hoc *
test1.sh
                            
TITLE HH fast sodium channel with FUNCTION_TABLEs
: Hodgkin - Huxley granule cell sodium channel using the data given in
: US Bhalla and JM Bower, J. Neurophysiol. 69:1948-1983 (1993)
: Needs the files tabchannels.dat and tabchannels.hoc
: Andrew Davison, The Babraham Institute, 1998.

NEURON {
	SUFFIX nagrantab
	USEION na READ ena WRITE ina
	RANGE gnabar, ina
	GLOBAL minf, hinf, mtau, htau
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

PARAMETER {
	v (mV)
	dt (ms)
	gnabar= 0.120 (mho/cm2) <0,1e9>
	ena = 45 (mV)
}
STATE {
	m h
}
ASSIGNED {
	ina (mA/cm2)
	minf
	hinf
	mtau (ms)
	htau (ms)
}

INITIAL {
	rates(v)
	m = minf
	h = hinf
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	ina = gnabar*m*m*m*h*(v - ena)
}

DERIVATIVE states {
	rates(v)
	m' = (minf - m)/mtau
	h' = (hinf - h)/htau
}

FUNCTION_TABLE tabminf(v(mV))
FUNCTION_TABLE tabmtau(v(mV)) (ms)
FUNCTION_TABLE tabhinf(v(mV))
FUNCTION_TABLE tabhtau(v(mV)) (ms)

PROCEDURE rates(v(mV)) {
	minf = tabminf(v)
	mtau = tabmtau(v) 
	hinf = tabhinf(v)
	htau = tabhtau(v)
}

Loading data, please wait...