ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/83344.

Pyramidal neuron coincidence detection tuned by dendritic branching pattern (Schaefer et al 2003)

 Download zip file 
Help downloading and running models
Accession:83344
"... We examined the relationship between dendritic arborization and the coupling between somatic and dendritic action potential (AP) initiation sites in layer 5 (L5) neocortical pyramidal neurons. Coupling was defined as the relative reduction in threshold for initiation of a dendritic calcium AP due to a coincident back-propagating AP. Simulations based on reconstructions of biocytin-filled cells showed that addition of oblique branches of the main apical dendrite in close proximity to the soma (d < 140 um) increases the coupling between the apical and axosomatic AP initiation zones, whereas incorporation of distal branches decreases coupling. ... We conclude that variation in dendritic arborization may be a key determinant of variability in coupling (49+-17%; range 19-83%; n = 37) and is likely to outweigh the contribution made by variations in active membrane properties. Thus coincidence detection of inputs arriving from different cortical layers is strongly regulated by differences in dendritic arborization."
Reference:
1 . Schaefer AT, Larkum ME, Sakmann B, Roth A (2003) Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. J Neurophysiol 89:3143-54 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,t; I A; I K; I M; I K,Ca; I Calcium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Coincidence Detection;
Implementer(s): Schaefer, Andreas T [andreas.schaefer at crick.ac.uk];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; I Na,t; I A; I K; I M; I K,Ca; I Calcium;
/
BACFiring
mod
cad2.mod *
child.mod *
childa.mod *
epsp.mod *
it2.mod *
kaprox.mod *
kca.mod *
km.mod *
kv.mod *
na.mod *
SlowCa.mod *
                            
: this model is built-in to neuron with suffix epsp

COMMENT
modified from syn2.mod
injected current with exponential rise and decay current defined by
         i = 0 for t < onset and
         i=amp*((1-exp(-(t-onset)/tau0))-(1-exp(-(t-onset)/tau1)))
          for t > onset

	compare to experimental current injection:
 	i = - amp*(1-exp(-t/t1))*(exp(-t/t2))

	-> tau1==t2   tau0 ^-1 = t1^-1 + t2^-1
ENDCOMMENT
					       
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	POINT_PROCESS epsp
	RANGE onset, tau0, tau1, imax, i, myv
	NONSPECIFIC_CURRENT i
}
UNITS {
	(nA) = (nanoamp)
	(mV) = (millivolt)
	(umho) = (micromho)
}

PARAMETER {
	onset=0  (ms)
	tau0=0.2 (ms)
	tau1=3.0 (ms)
	imax=0 	 (nA)
	v	 (mV)
}

ASSIGNED { i (nA)  myv (mV)}

LOCAL   a[2]
LOCAL   tpeak
LOCAL   adjust
LOCAL   amp

BREAKPOINT {
	myv = v
        i = curr(t)
}

FUNCTION myexp(x) {
	if (x < -100) {
	myexp = 0
	}else{
	myexp = exp(x)
	}
}

FUNCTION curr(x) {				
	tpeak=tau0*tau1*log(tau0/tau1)/(tau0-tau1)
	adjust=1/((1-myexp(-tpeak/tau0))-(1-myexp(-tpeak/tau1)))
	amp=adjust*imax
	if (x < onset) {
		curr = 0
	}else{
		a[0]=1-myexp(-(x-onset)/tau0)
		a[1]=1-myexp(-(x-onset)/tau1)
		curr = -amp*(a[0]-a[1])
	}
}

Loading data, please wait...