Fronto-parietal visuospatial WM model with HH cells (Edin et al 2007)

 Download zip file 
Help downloading and running models
Accession:98017
1) J Cogn Neurosci: 3 structural mechanisms that had been hypothesized to underlie vsWM development during childhood were evaluated by simulating the model and comparing results to fMRI. It was concluded that inter-regional synaptic connection strength cause vsWM development. 2) J Integr Neurosci: Given the importance of fronto-parietal connections, we tested whether connection asymmetry affected resistance to distraction. We drew the conclusion that stronger frontal connections are beneficial. By comparing model results to EEG, we concluded that the brain indeed has stronger frontal-to-parietal connections than vice versa.
References:
1 . Edin F, Macoveanu J, Olesen P, Tegnér J, Klingberg T (2007) Stronger synaptic connectivity as a mechanism behind development of working memory-related brain activity during childhood. J Cogn Neurosci 19:750-60 [PubMed]
2 . Edin F, Klingberg T, Stödberg T, Tegnér J (2007) Fronto-parietal connection asymmetry regulates working memory distractibility. J Integr Neurosci 6:567-96 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell; Abstract Wang-Buzsaki neuron;
Channel(s):
Gap Junctions: Gap junctions;
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Working memory; Attractor Neural Network;
Implementer(s):
Search NeuronDB for information about:  Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell;
/* Results contains all the data about spike times and which cells fired 
* the spikes. It also contains functions for handling the data.
*
* Author: Fredrik Edin, 2003.
* Address: freedin@nada.kth.se
*/

begintemplate Results

    /* Public functions */
    public store1         // Stores action potentials during a simulation.
                          // Fast, but vectors may not be resized.
    public store2         // Stores and saves action potentials during a
		          // simulation. Does not save data in array.
    public store3         // Stores action potentials during a simulation.
                          // Slow, but easy to use.
    public terminate      // Tells Results that a simulation is finished
    public save           // Saves the action potential data
    public ff             // Computes the firing rate of every cell
    public popff          // Computes the mean firing rate
    public fs             // Computes the standard deviation of firing rates
    public findActive     // Finds cells in net n with rates above X mV
    public binAPs         // Bins the action potentials (fills APmx)
    public cohMat         // Fills the coherence matrix
    public popCoh         // Calculates the population coherence
    public kRange         // Calculates a coherence function
    public cohGroups      // Calculates to coherence of and between groups of cells
    public setLFP         // Stores LFPs during a simulation
    public LFP            // Creates a population LFP time trace
    public oscfreq        // /*FIX ME, ej färdig*/
    public popVec         // Computes the population vector
    public setAHP         // Sets the AHP of the cells in the net 
    public getAHP         // Gets the AHP of the cells in the net
    public Iapps          // Stores the drive of every cell
    public c1_p_c2_e_cTot //
    public doEXP          // Does an experiment during the simulation
    public setNet         // Sets a reference to the net
    public storeCh        // Stores the charge during the simulation 
    public storeCh2       // Stores the charge during the simulation. Faster, less good
    public restoreCh      // To be called before every new storing of charges
    public calcCurr       // Calculates and stores currents for EXP = 3
    
    /* Public objects and variables */
    public bins      // The number of time bins
    public binw      // The time bin width in ms
    public APCells   // Vector with cell indices for every spike
    public APTimes   // Vector with spike times in ms
    public APmx      // Time binned spike matrix (cell*time) 
    public APCount   // Vector with spike counts for every cell
    public rate      // Vector with rates for every cell in Hz
    public indvec    // Vector with cell indices
    public LFPvec    // Vector with time trace of population LFP
    public kappa     // Vector with network coherence function values
    public dkdt      // Vector with derivative of kappa
    public tauvec    // Time vector corresponding to kappa
    public dtauvec   // Time vector corresponding to dkdt
    public coMat     // Matrix of coherence measures (K(tau)) between cells 
    public cohG      // Indices of cells having firing rates above or below X
    public cgK       // Coherence matrices for and between groups of cells
    public popv      // Vector with population vectors
    public poptime   // Vector with corresponding time values
    public drive     // Vector with the excitatory drive of the cells
    public tmp  
    public tmp2
    public tmp3
    public tmp4    
    public Charge    // Matrix with total charge. Has 6 rows, one per
                     // synapse, and one column per net
    
    /* Objects */
    objref netborder // The border between nets in terms of cell indices
    objref APCells   // Vector with cell indices for every spike
    objref APTimes   // Vector with spike times in ms
    objref APmx[1]   // Time binned spike matrix (cell*time) 
    objref APCount   // Vector with spike counts for every cell
    objref rate      // Vector with rates for every cell in Hz
    objref LFPvec    // Vector with time trace of population LFP
    objref kappa     // Vector with network coherence function values
    objref dkdt      // Vector with derivative of kappa
    objref tauvec    // Time vector corresponding to kappa
    objref dtauvec   // Time vector corresponding to dkdt
    objref coMat     // Matrix of coherence measures (K(tau)) between cells 
    objref cgK[3]    // Coherence matrices for and between groups of cells
    objref cohG[2]   // Indices of cells having firing rates above or below X
    objref indvec    // Vector with cell indices
    objref indvec2   // Vector with cell indices
    objref spct      // Spectrum vector of individual LFP
    objref popspct   // Spectrum vector of population LFP
    objref popv      // Vector with population vectors
    objref poptime   // Vector with corresponding time values
    objref drive     // Vector with the excitatory drive of the cells
    objref dfile     // File object
    objref tmp       // Temporary object
    objref tmp2      // Temporary object
    objref tmp3      // Temporary object
    objref tmp4      // Temporary object
    objref net       // The net object
    objref EXPv      // Vector with experiment parameters
    objref Charge    // Matrix with total charge. Has 6 rows, one per
                     // synapse, and one column per net
    objref rC1v      // Conductance 1 to get x% charge 1
    objref rC2v      // Conductance 2 to get x% charge 2
    objref chStored  // Matrix containing which charges have already been stored
    objref offset    // Vector, see popVec
    strdef str       // Temporary string

    /* Creates a new Result object 
    *
    * Arg 1, nCell    : The total number of cells
    * Arg 2, netborder: Vector with the starting index of the cells of 
    *                   every net.
    * Arg 3, EXPv     : Vector with experiments
    * Arg 4, tStop    : The end of the simulation in ms
    *(Arg 5, tStart   : The end of the initial transient of the simulation and
    *(                  the start of data accumulation, in ms)
    */
    proc init() {
	nCell = $1
	netborder = $o2
	EXPv = $o3
	tStop = $4
	if( numarg() > 4 ) {
	    tStart = $5
	} else {
	    tStart = 0
	}
	ahp = 0
	vMax = 100 * nCell * ( tStop - tStart ) / 1000 /* 100 Hz */
	APCells = new Vector( vMax )
	APTimes = new Vector( vMax )
	APCount = new Vector( nCell + 1 )
	LFPvec = new Vector()
	drive = new Vector()
	dfile = new File()
	dfile.wopen( "APs.txt" )
	timeind = 0
	binw = 0.2
	netn = netborder.size()-1
	if( EXPv.x[0] == 3 ) {
	    Charge = new Matrix( netborder.size()-1, 18 )
	} else {
	    Charge = new Matrix(nCell, 18, 2) /* 18 synapses in ECell. 2 means SPARSE */
	}
	chStored = new Matrix( netborder.size()-1, 18 )
	print "Results.init"
    }
    
    /* Stores the time of a spike and which cell fired it.
    * Fast alternative
    * 
    * Arg 1, i: The cell that fired
    * Arg 2, p: 0 = no print, 1 = print
    */
    proc store1() { local i, spt
	i = $1
	p = $2
	if( p ) {
	    print "Cell ", i, "\t", "spike ", t, "\t", nspk, "spikes"
	}
 	APCells.x[ nspk ] = i
	APTimes.x[ nspk ] = t
	APCount.x[i] += 1
	nspk += 1
 	dfile.printf( "%g\t%d\n", t, i )
   }
    
    /* Stores the time of a spike and which cell fired it.
    * Slow alternative
    * 
    * Arg 1, i: The cell that fired
    */
    proc store2() { local i, spt
	i = $1
	dfile.printf( "%g\t%d\n", t, i )
    }
        
    /* Stores the time of a spike and which cell fired it.
    * Slow alternative
    * 
    * Arg 1, i: The cell that fired
    *(Arg 2, spt: The spike time)
    */
    proc store3() { local i, spt
	i = $1
	if( nspk == vMax ) {
	    vMax = int( vMax * 1.5 )
	    APCells.resize( vMax )
	    APTimes.resize( vMax )
	    print "resized AP vectors"
	}
 	APCells.x[ nspk ] = i
	if( numarg() > 1 ) {
	    spt = $2
	    APTimes.x[ nspk ] = spt
	} else {
	    APTimes.x[ nspk ] = t
	}
	APCount.x[i] += 1
	nspk += 1
    }
    
    /* Stores charge flowing through synapses. Rows contain data from 
    * different cells. Columns contain data from different synapses. Remember to 
    * set chStored to zero every time you begin to store charges anew,
    * i.e. at every new time step that you store charges. This is done through
    * procedure restoreCh
    *
    * Arg1, deltaT: dt between time of reports in ms
    * Arg2, to    : number of downstream net
    * Arg3, syn   : ICell: 0-5, ECell: 0-17
    */
    proc storeCh() { local deltaT, from, to, syn, N, y, A, exin, loc, rA, synC, i
	deltaT = $1
	to = $2
	syn = $3
	
	if( !chStored.x[to][syn] ) {
	    
	    nloc = net.cell[ netborder.x[to] ].RELAR.size()
	    synum = net.cell[ netborder.x[to] ].synCnt
	    
	    nexin = synum / nloc
	    exin = syn % nexin
	    loc = int( syn / nexin )
	    
	    Ar = net.cell[ netborder.x[to] ].RELAR.x[ loc ]
	    net.getMeanI( to, exin, loc )
	    
	    for i = netborder.x[to], netborder.x[to+1]-1 {
		Charge.x[i][syn] = Charge.x[i][syn] + net.Ivec.x[i] * deltaT * A
	    }
	    
	    chStored.x[to][syn] = 1
	}
    }
    
    /* Stores charge flowing through synapses. Rows contain data from 
    * different nets. Columns contain data from different synapses. Remember to 
    * set chStored to zero every time you begin to store charges anew,
    * i.e. at every new time step that you store charges. This is done through
    * procedure restoreCh. Used in EXP = 3
    *
    * Arg1, deltaT: dt between time of reports in ms
    * Arg2, to    : number of downstream net
    * Arg3, syn   : ICell: 0-5, ECell: 0-17
    */
    proc storeCh2() { local deltaT, from, to, syn, N, y, A, exin, loc, rA, synC, i
	
	deltaT = $1
	to = $2
	syn = $3
	
	nloc = net.cell[ netborder.x[to] ].RELAR.size()
	synum = net.cell[ netborder.x[to] ].synCnt
	
	nexin = synum / nloc
	exin = syn % nexin
	loc = int( syn / nexin )
	
	Ar = net.cell[ netborder.x[to] ].RELAR.x[ loc ]
	N = netborder.x[to+1]-netborder.x[to]
	Charge.x[to][syn] = Charge.x[to][syn] + net.getMeanI( to, exin, loc ) * deltaT * A * N
    }
    
    /* See storeCh for more information 
    */
    proc restoreCh() { local i, j
	for i = 0, chStored.nrow-1 {
	    for j = 0, chStored.ncol-1 {
		chStored.x[i][j] = 0
	    }
	}
    }
    
   
    /* Finishes up the simulation by resizing vectors 
    */
    proc terminate() { local i
	i = APCells.size()
	dfile.close()
	APCount.x[nCell] = nspk
	//APCount.x[nCell] = nspk*(nspk>i)+i*(i>nspk)
	print "finish: APs = ", APCount.x[nCell]
	//APCells.resize( APCount.x[nCell] )
	//APTimes.resize( APCount.x[nCell] )
	/*dfile.wopen("vmatCN0.002a.ma")
	vmat.fprint(dfile)
	dfile.close()*/
	print "Results.terminate"
    }
    
    /* Save saves the spike data 
    *
    * Arg 1, str: The file name 
    */
    proc save() { local i
	print "Results.save"
	if( numarg() > 0 ) {
	    str = $s1
	    sprint( str, "%s%s", str, ".res" )
	} else {
	    str = "APs.txt"
	}
	dfile.wopen( str )
	for i = 0, APCount.x[nCell] - 1 {
	    dfile.printf( "%f\t%d\n", APTimes.x[i], APCells.x[i] )
	}
	dfile.close()
	rtime = stopsw()
	printf("\n%d:%d -- AP data saved in file %s\n", rtime/60, rtime%60, str )
    }
    
    /* ff computes the firing frequency of each cell.  
    * 
    *(Arg 1, indvec: The index vector of the cells for which the firing 
    *                frequency is to be computed. If this is empty then the
    *                rates of all cells in the net will be computed.)
    *(Arg 2, netn  : Index of the net for which the rates are to be computed. 
    *                If this is used, then indvec contains indices for the 
    *                cells in this net. -1 = all nets )
    *(Arg 3, begin : The starting point of the interval)
    *(Arg 4, end   : The end point of the interval)
    */
    proc ff() { local i, begin, end, n, m, netn, tt
	if( numarg() > 0 ) {
	    indvec = $o1.c
	} else {
	    indvec = new Vector()
	}
	
	if( numarg() > 1 ) {
	    netn = $2
	} else {
	    netn = -1
	}
	
	if( indvec.size() == 0 ) {
	    if( netn < 0 ) {
		n = nCell
	    } else {
		n = netborder.x[ netn+1 ] - netborder.x[ netn ]
	    }
	    indvec = new Vector( n )
	    indvec.indgen()
	}
	
	indvec.add( netborder.x[ (netn>0)*netn ] )
	
	if( numarg() > 3 ) {
	    begin = $3
	    end = $4
	} else {
	    begin = tStart
	    end = tStop
	}
	tmp = new Vector( nCell, 0 )
	rate = new Vector( nCell, 0 )
	
	/* Alt 2 */
	for i = 0, nCell - 1 {
	    tmp.x[i] = APmx[i].c( begin / binw, end / binw - 1 ).sum()
	}
	tmp.div( ( end - begin ) / 1000 )
	rate.copy( tmp, indvec )
	print "Rate computed using alt 2"
	/*for i = 0, rate.size() - 1 {
	    print i, ") ", rate.x[i]
	    print i, ") ", APCount.x[i]
	}*/
    }
    
    /* popff computes the population firing frequency.
    * 
    *(Arg 1, indvec: The index vector of the cells for which the firing 
    *                frequency is to be computed. If this is empty then the
    *                rates of all cells will be computed.)
    *(Arg 2, netn  : Index of the net for which the rates are to be computed. 
    *                If this is used, then indvec contains indices for the 
    *                cells in this net. -1 = all nets)
    *(Arg 3, begin : The starting point of the interval)
    *(Arg 4, end   : The end point of the interval)
    */
    func popff() { local i, begin, end, netn
	if( numarg() > 0 ) {
	    indvec = $o1.c
	} else {
	    ff()
	}
	if( numarg() > 1 ) {
	    netn = $2
	} else if( numarg() == 1 ) {
	    ff( indvec )
	}
	if( numarg() > 3 ) {
	    begin = $3
	    end = $4
	    ff(indvec, netn, begin, end)
	} else if( numarg() == 2 ) {
	    ff( indvec, netn )
	}
	
	tmp = new Vector()
	tmp.index( rate, indvec )
	return tmp.mean()
    } 
    
    /* fs computes the standard deviation of the firing rates of the cells 
    * 
    *(Arg 1, indvec: The index vector of the cells for which the firing 
    *                frequency is to be computed. If this is empty then the
    *                rates of all cells will be computed.)
    *(Arg 2, netn  : The net for which the rates are to be computed. If this
    *                is used, then indvec contains indices for the cells in
    *                this net. -1 = all nets)
    *(Arg 3, begin : The starting point of the interval)
    *(Arg 4, end   : The end point of the interval)
    */
    func fs() { local i, begin, end, n, netn, mu, sq, vr
	if( numarg() > 0 ) {
	    indvec = $o1.c
	} else {
	    mu = popff()
	}
	if( numarg() > 1 ) {
	    netn = $2
	} else if( numarg() == 1 ) {
	    mu = popff( indvec )
	}
	if( numarg() > 3 ) {
	    begin = $3
	    end = $4
	    mu = popff(indvec, netn, begin, end)
	} else if( numarg() == 2 ) {
	    mu = popff( indvec, netn )
	}
	
	n = indvec.size()
	tmp = new Vector()
	tmp.index( rate, indvec )
	vr = tmp.sub( mu ).pow( 2 ).sum() / ( n - 1 )
	print "Results.fs"
	return sqrt( vr )
    }
    
    
    /* Finds the cells in net netnum with a firing rate above 
    * threshold thr, and places their indices in vector indvec.
    *
    * Arg 1, thr   : The treshold activity 
    *(Arg 2, netn  : Index of the net. -1 = all nets) 
    *(Arg 3, begin : The start time)
    *(Arg 4, end   : The end time)
    */
    proc findActive() { local thr, netn
	print "Results.findActive finished"
	thr = $1
	indvec = new Vector()
	if( numarg() > 1 ) {
	    netn = $2
	} else {
	    netn = -1
	}
	if( numarg() > 3 ) {
	    begin = $3
	    end = $4
	} else {
	    begin = tStart
	    end = tStop
	}
	ff(indvec, netn, begin, end)
	indvec = rate.c.indvwhere( ">=", thr )
	/*print "Indvec"
	for i = 0, indvec.size() - 1 {
	    print indvec.x[i]
	}*/
    }
    
    /* binAPs bins the spikes 
    *
    *(Arg 1, binw : the width of the bin in ms) 
    *(Arg 2, begin: The start time)
    *(Arg 3, end  : The end time)
    */
    proc binAPs() { local begin, end, i, siz    
	print "Results.binAPs"
	objref APmx[nCell + 1]
	if( numarg() > 0 ) {
	    binw = $1
	}
	if( numarg() > 2 ) {
	    begin = $2
	    end =  $3
	} else {
	    begin = tStart
	    end = tStop
	}
	//print "tStart: ", begin
	bins = int( ( end - begin ) / binw )
	for i = 0, nCell-1 {
	    tmp = new Vector( bins+1 )
	    APmx[i] = tmp
	}
	print "bins: ", bins
	siz = APCells.size()
	for i = 0, siz-1 {
	    if( APTimes.x[i] >= begin && APTimes.x[i] < end ) {
		APmx[ APCells.x[i] ].x[int( (APTimes.x[i] - begin )/binw)] += 1
	    }
	}
	for i = 0,nCell-1 {
	    APmx[i].resize(bins)
	}
	APmx[nCell] = APTimes.histogram(begin, end, binw)
    }
    
    /* cohMat creates a coherence matrix of the spike data. Each position
    * (i,j) in the matrix contains the coherence between spike train i and j,
    * where coherence is based on the bin width: co(tau) = sum( i(k) * j(k) )
    * / sqrt( sum( i(k) ) * sum( j(k) ) ). The coherence is calculated only
    * after 1000 ms transients.
    *
    * Arg 1, tau    : The bin width
    *(Arg 2, begin  : The start time in ms)
    *(Arg 3, end    : The stop time in ms)
    *(Arg 4, indvec : The index vector)
    *(Arg 5, indvec2: The second vector)
    */
    proc cohMat() { local tau, siz, siz2, i, j, n, num, den
	if( tStop < tStart + 100 ) {
	    print "Time of simulation too short"
	    coMat = new Matrix( siz, siz, -2 )
	} else {
	    print "Starting cohMat"
	    tau = $1
	    if( numarg() > 2 ) {
		begin = $2
		end = $3
	    } else {
		begin = tStart
		end = tStop
	    }
	    binAPs( tau, tStart, tStop )
	    if ( numarg() > 3 ) {
		siz = $o4.size()
		siz2 = $o4.size()
		indvec = $o4
		indvec2 = $o4
		if( numarg() > 4 ) {
		    siz2 = $o5.size()
		    indvec2 = $o5
		}
	    } else {
		siz = nCell
		siz2 = nCell
		indvec = new Vector(siz)
		indvec.indgen(1)
		indvec2 = indvec
	    }
	    coMat = new Matrix( siz, siz2 )
	    if ( numarg() > 2 ) {
		coMat.setdiag( 0, -1 )
	    }
	    for i = 0, siz-1 {
		n = i - 1
		if ( numarg() > 2 ) {
		    n = siz2 - 1
		}
		for j = 0, n {
		    num = APmx[ indvec.x[i] ].c.mul( APmx[ indvec2.x[j] ] ).sum()
		    den = sqrt( APmx[ indvec.x[i] ].c.sum() * APmx[ indvec2.x[j] ].sum() )
		    if( num == 0 || den == 0 ) {
			coMat.x[i][j] = 0
		    } else {
			coMat.x[i][j] = num / den
		    }
		    if( numarg() < 3 ) {
			coMat.x[j][i] = coMat.x[i][j]
		    }
		}
	    }
	    print "cohMat finished"
	}
    }
    
    
    /* popCoh creates a population coherence index, which is the mean a 
    * all the dual coherences between the cells. The index is calculated
    * using either all cells in the net or a subset of it
    *
    * Arg 1, tau   : The bin width 
    *(Arg 2, indvec: A vector with the subset of cells included.)
    */
    func popCoh() { local k, tau, n, i, j
	print "Starting popCoh"
	k = 0
	tau = $1
	if (tau > 0) {
	    if( numarg() > 1 ) {
		indvec = $o2
		cohMat( tau, indvec )
		n = indvec.size()
	    } else {
		cohMat( tau )
		n = nCell
	    }
	    k = 0
	    for i = 1, n-1 {
		for j = 0, i - 1 {
		    k += coMat.x[i][j]
		}
	    }
	    k /= n * (n-1) / 2
	    print "popCoh finished, kappa: ", k
	    return k
	} else {
	    print "popCoh finished, kappa: ", 0
	    return 0
	}
    }
    
    /* kRange creates a Vector kappa( tau ) between kappa(0) = 0 and 
    * kappa(end) = 1 with increments dtau, and also creates its derivative.
    * Finally, it computes and returns the oscillation frequency
    *
    * Arg 1, dtau: the change in bin width 
    */
    proc kRange() { local dtau, tau, siz, y, k, i
	print "Starting kRange"
	if( numarg() > 0 ) {
	    dtau = $1
	} else {
	    dtau = 1
	}
	if( numarg() > 1 ) {
	    tau = $2
	} else {
	    tau = 0
	}
	kappa = new Vector( 100 )
	tauvec = new Vector( 100 )
	siz = 0
	y = 0
	while (y < 1) {
	    print " "
	    print "kRange, #", siz+1
	    y = popCoh( tau )
	    kappa.x[siz] = y
	    tauvec.x[siz] = tau
	    siz += 1
	    tau += dtau
	    print "kappa = ", y
	}
	kappa.resize( siz )
	tauvec.resize( siz )
	dtauvec = tauvec.c( 1, siz-1 ).add( tauvec.c( 0, siz-2 ) ).div( 2 )
	dkdt = kappa.c( 1, siz-1 ).sub( kappa.c( 0, siz-2 ) ).div( dtau )
    }
    
    /* Computes the coherence within two groups of cells, one group which is
    * synchronized, the other not. They are separated by their different 
    * firing rates. The synchronized cells have firing rates above 34 Hz. 
    *
    *(Arg 1, border: The border frequency for separating the two groups of 
    * cells. Default is 34 Hz.)
    */
    proc cohGroups() { local border, i
	if( numarg() > 0 ) {
	    border = $1
	} else {
	    border = 34
	}
	ff()
	cohG[0] = new Vector()
	cohG[0].indvwhere(rate, ">", border)
	cohG[1] = new Vector()
	cohG[1].indvwhere(rate, "<=", border)
	for i = 0, 1 {
	    if( cohG[i].size() > 0 ) {
		cohMat( 1, cohG[i] )
		cgK[i] = coMat.c
	    } else { 
		print "cohG[", i, "] too small"
	    }
	}
	if( cohG[0].size() > 0 && cohG[1].size() > 0 ) {
	    cohMat( 1, cohG[0], cohG[1] )
	    cgK[2] = coMat.c
	}
	print "cohG[0]: length = ", cohG[0].size()
	print "cohG[1]: length = ", cohG[1].size()
    }
    
    /* Sets the LFP at time t. The data for each cell is added
    * to the end of the vector. Used by the network object.
    * 
    * Arg 1, lfp: The population LFP at time t
    */
    proc setLFP() { local lfp
	lfp = $1
	if( timeind == LFPvec.size() ) {
	    LFPvec.resize( timeind*1.5 )
	}
	LFPvec.x[ timeind ] = lfp
	timeind += 1
	//print timeind
    }   
    
    /* Computes a time trace of the population synaptic activity
    * 
    *(Arg 1, indvec: The index vector of the cells for which the LFP 
    *                is to be computed. If this is empty then the
    *                rates of all cells will be computed.)
    *(Arg 2, netn  : Index of the net for which the rates are to be computed. 
    *                If this is used, then indvec contains indices for the 
    *                cells in this net. -1 = all nets )
    */
    /*proc LFP() { local i, begin, end, n, netn
	if( numarg() > 0 ) {
	    indvec = $o1.c
	} else {
	    indvec = new Vector( nCell )
	    indvec.indgen()
	}
	if( numarg() > 1 ) {
	    netn = $2
	    if( netn < 0 ) {
		netn = 0
		n = nCell
	    } else {
		n = netborder.x[ netn+1 ] - netborder.x[ netn ]
	    }
	    if( indvec.size() == 0 ) {
		indvec = new Vector( n )
		indvec.indgen(1)
	    }		
	    indvec.add( netborder.x[netn] )
		
	}*/
	
	/* Calculate population LFP for the whole period */
	//LFPvec = new Vector( LFPmat.ncol ) /* clear vector */ 
	/*for i = 0, indvec.size() - 1 {
	    LFPvec.add( LFPmat.getrow( indvec.x[i] ) )
	}
	LFPvec.div( indvec.size() )
	
    }*/
    
    /* Calculates the oscillation frequency of the population.
    * This is taken to be the peak of the power spectrum of the
    * spiking activity
    *
    *(Arg 1, indvec: The index vector of the cells for which the firing 
    *                frequency is to be computed. If this is empty then the
    *                rates of all cells will be computed.)
    *(Arg 2, netn  : The net for which the rates are to be computed. If this
    *                is used, then indvec contains indices for the cells in
    *                this net. -1 = all nets)
    *(Arg 3, begin : The starting point of the interval)
    *(Arg 4, end   : The end point of the interval)
    */
    func oscfreq() { local i, begin, end, n, netn, freq
	if( numarg() > 0 ) {
	    indvec = $o1.c
	} else {
	    indvec = new Vector()
	}
	if( numarg() > 1 ) {
	    netn = $2
	} else {
	    netn = -1
	}
	
	if( indvec.size() == 0 ) {
	    if( netn < 0 ) {
		n = nCell
	    } else {
		n = netborder.x[netn+1] - netborder.x[netn]
	    }
	    indvec = new Vector( n )
	    indvec.indgen()
	}
	
	indvec.add( netborder.x[ (netn>0)*netn ] )
	
	if( numarg() > 3 ) {
	    begin = $3
	    end = $4
	} else {
	    begin = tStart
	    end = tStop
	}
	
	binAPs(0.2)
	/*spct = new Vector( indvec.size() )
	for i = 0, n - 1 {
	    //spct.spctrm( APmx[ indvec.x[i] ] ) // FIX ME
	    if( i == 0 ) {
		popspct = new Vector( spct.size() )
	    }
	    popspct.add( spct )
	}
	freq = popspct.indvwhere( "==", popspct.max() ).max()*/
	freq = 0
	return freq
	
    }
    
    /* Computes the population vector. Since the network is a ring, but angles
    * are from 0 to 2 PI, an activity centered around 0 (= 2PI) would have a 
    * population vector = PI. To correct this, one first finds a rotation of the 
    * ring which gives a minimum variance (in the example above, the variance is
    * smaller if we shift the activity PI degrees). Then, one calculates the population
    * vector in the usual way. Then one rotates the ring back.
    *
    * The population vector of several networks is done by adding their activities
    * and taking the population vector.
    *
    * Arg 1, window  : The time window in ms
    * Arg 2, overlap : Window overlap in ms
    * Arg 3, netn    : The net number. netn = -1: sum all rates according to angle and do histogram
    *                                  netn = -2: same as -1 but only excitatory (odd) netn's
    * Arg 4, begin   : The start time in ms
    * Arg 5, end     : The stop time in ms
    * Return: Population vector as an angle
    */
    func popVec() { local window, overlap, netn, begin, end, no, dtau, m, time, ind, N
	window = $1
	overlap = $2
	netn = $3
	begin = $4
	end = $5
	dtau = window-overlap
	no = int((end-begin)/dtau)
	popv = new Vector( no, 0 )
	poptime = new Vector( no, 0 )
	tmp3 = new List() /* Every vector in this list contains that net's part of the firing rate distribution */
	tmp4 = new List() /* Every vector in this list contains that net's angles */
	if( netn < 0 ) {
	    indvec = new Vector()
	    tmp2 = new Vector()
	    n = (netborder.size()-1) / abs(netn)
	    for i = 0, n - 1 {
		tmp2.indgen( netborder.x[(i+1)*abs(netn)-1], netborder.x[(i+1)*abs(netn)]-1, 1 )
		indvec.append( tmp2.c )
		tmp3.append( tmp2.c )
		tmp4.append( net.theta.c( netborder.x[(i+1)*abs(netn)-1], netborder.x[(i+1)*abs(netn)]-1 ) )
	    }
	    N = indvec.size()
	    offset = new Vector( n ) /* Contains the rotations of each network */
	} else {
	    N = netborder.x[netn+1] - netborder.x[netn]
	    indvec = new Vector(N)
	    indvec.indgen(netborder.x[netn], 1)
	    tmp4.append( net.theta.c(netborder.x[netn], netborder.x[netn+1]-1) )
	    tmp3.append( indvec.c )
	    offset = new Vector(1)
	}
	
	/* Find the minimum variance and calculate the mean at that place */
	for i = 0, no-1 {
	    m = popff( indvec, -1, begin+i*dtau, begin+window+i*dtau ) 
	    if( m==0 ) {
		return 0
	    } else {
		tmp2 = new Vector() /* Contains mean activity of every network */
		
		/* Calculate the firing rates and make a distribution */
		for j = 0, tmp3.count()-1 {
		    m = rate.ind( tmp3.object(j) ).mean()
		    tmp2.append( m )
		    tmp = rate.ind( tmp3.object(j) ).c.div( tmp3.object(j).size() )
		    tmp3.insrt( j, tmp.c )
		    tmp3.remove( j+1 )
		}
		m = tmp2.sum()
		tmp2.div( tmp2.sum )
		for q = 0, tmp3.count()-1 {
		    print tmp3.object(q).mean()
		}
		sm = 0
		for j = 0, tmp3.count()-1 {
		    tmp3.object(j).div( m )
		    sm = sm + tmp3.object(j).sum()
		}
		
		/* Calculate variance and mean for the first angle */
		for j = 0, tmp4.count()-1 {
		    tmp4.object(j).rotate(1) /* A technicality, mustnt start at angle 0, see below */
		    offset.x[j] = 2*PI-tmp4.object(j).x[0]
		}
		X = 0
		X2 = 0
		for j = 0, tmp3.count()-1 {
		    X2 = X2 + tmp3.object(j).c.mul( tmp4.object(j) ).mul( tmp4.object(j) ).sum()
		    X = X + tmp3.object(j).c.mul( tmp4.object(j) ).sum()
		}
		popv.x[i] = (X+offset.c.mul(tmp2).sum())%(2*PI)
		s2 = X2 - X^2
		print "Mean ", X
		
		/* Calculate variance and mean for the rest of the angles */
		for j = 1, N-1 {
		    
		    /* Choose the angle vector with the lowest initial angle and rotate that */
		    n = 0
		    h1 = tmp4.object(0).x[0]
		    for k = 1, tmp4.count()-1 {
			h2 = tmp4.object(k).x[0]
			if( h2 > h1 ) {
			    n = k
			    h1 = h2
			}
		    }
		    tmp4.object(n).rotate(1)
		    offset.x[n] = 2*PI - tmp4.object(n).x[0]
		    print "h1 ", h1, "h2 ", h2
		    print "Offset  ", offset.x[n], " vector ", n
		    print "offset2 ", offset.c.mul(tmp2).sum()
		    
		    /* Calculate variance and mean */
		    X = 0
		    X2 = 0
		    for k = 0, tmp3.count()-1 {
			X2 = X2 + tmp3.object(k).c.mul( tmp4.object(k) ).mul( tmp4.object(k) ).sum()
			X = X + ( tmp3.object(k).c.mul( tmp4.object(k) ).sum() )
		    }
		    print "Mean: ", (X+offset.c.mul(tmp2).sum())%(2*PI)
		    s22 = X2 - X^2
		    if( s22 < s2 ) {
			s2 = s22
			popv.x[i] = (X+offset.c.mul(tmp2).sum())%(2*PI)
		    }
		}
		poptime.x[i] = begin - window/2 + (i+0.5)*dtau
		
		/* Rotate the last angle back to the initial position */
		n = 0
		h1 = tmp4.object(0).x[0]
		for k = 1, tmp4.count()-1 {
		    h2 = tmp4.object(k).x[0]
		    if( h2 < h1 ) {
			n = k
			h1 = h2
		    }
		}
		tmp4.object(n).rotate(1)
		for k = 0, tmp4.count()-1 {
		    tmp4.object(k).rotate(-1)
		}
	    }
	}
    
	/* Calculate the population vector as an angle*/
	return popv.mean()
	
    } 
    
    /* Sets the afterhyperpolarization of the cells in the net
    *
    * Arg 1, ahp: The AHP in mV 
    */
    proc setAHP() {
	ahp = $1
    }
    
    
    /* Gets the afterhyperpolarization of the cells in the net
    *
    * Return: The AHP in mV 
    */
    func getAHP() {
	return ahp
    }
    
    /* Creates a vector with the excitatory drive of the cells 
    * in the net.
    * 
    * Arg 1, Iapps: The excitatory drive of a cell 
    */
    proc Iapps() {
	//print "Drive ", $1
	drive.append( $1 )
    }
    
    
        /* New: Here, the amount of current flowing through channel a
    * is calculated and can be stored in files rC1 and rC2.
    * This is to obtain estimates of the weights needed to 
    * obtain x% of total excitatory current flowing through channel b
    * while preserving total current. These values are always dependent
    * on the experimental protocol as NMDA conductance is voltage 
    * dependent. */
    func c1_p_c2_e_cTot() {
	
	Nt = 1  /* No of time points in EXPv vector */
	while( EXPv.x[Nt+1] > EXPv.x[Nt] ) {
	    Nt = Nt + 1
	}
	
	/* Prespecified r_c */
	r_cOld = EXPv.x[2+Nt]
	print "old r_c: ", r_cOld
	
	/* Algorithm: 1) We take a starting value for g1 and g2 to get c2 = x% of cTot
	* and c1 = (100-x)% of cTot.
	* 2) We measure the charge percentage y% actually flowing through the channels, as well as 
	*    total charge cTot.
	* 3) We use these values to produce better estimates of g1 and g2 for y%
	* 4) We store a 1 in tmp at position y to say that that percentage has been estimated.
	* 5) We do a linear interpolation between g1 and g2 at y and at the nearest percentage
	*    where it has been measured.
	* 6) After many different percentages have been measured, we redo the whole process by setting
	*    all elements of tmp to 0.
	*/
	
	/* 1) Obtain values for c1 & c2. Different depending on which experiment */
	/* Case rNMDA */ 
	/* Case X->E transition */
        if( EXPv.x[0] == 4 || EXPv.x[0] == 5 ) {
	    
	    print "Calculating c1 and c2"
	    binAPs()
	    ff()
	    
	    /* c1 */
	    c1 = 0
	    Nn = EXPv.x[1+Nt]
	    for j = 0, Nn-1 {
		to = EXPv.x[3+Nt+9*j]
		from = EXPv.x[4+Nt+9*j]
		synum = net.cell[ netborder.x[to] ].synCnt
		nloc = net.cell[ netborder.x[to] ].RELAR.size()
		nexin = synum / nloc
		syn = EXPv.x[6+Nt+9*j] * nexin + EXPv.x[5+Nt+9*j]		
		for i = netborder.x[to], netborder.x[to+1]-1 {
		    I = -Charge.x[i][syn] /* which syn? */
		    if( I<0 ) {
			print "WARNING, I is below 0"
		    }
		    sumk = 0
		    sumTot = 0
		    //print "new cell ", i, " count = ", net.cell[i].pre_list[syn].count(), " from ", from
		    for k = 0, net.cell[i].pre_list[syn].count()-1 {
			if( from < 0 ) {
			    wf = net.cell[i].pre_list[syn].object(k).weight * net.vx
			    sumTot = sumTot + wf
			    sumk = sumk + wf
			} else {
			    cn = net.cell[i].getPreID( syn, k )
			    wf = net.cell[i].pre_list[syn].object(k).weight * rate.x[cn]
			    sumTot = sumTot + wf
			    if( cn >= netborder.x[from] && cn < netborder.x[from+1] ) {
				sumk = sumk + wf
			    }
			    //print "wf ", wf, " cn ", cn, " sumk ", sumk
			}
		    }
		    if( sumk != 0 ) {
			c1 = c1 + I * sumk / sumTot
		    }
		    //print "I ", I, " sumk ", sumk, " sumTot ", sumTot
		    //print "delta_c1 ", I * sumk / sumTot, " c1 ", c1
		}
		
		/* c2 */
		c2 = 0
		
		to = EXPv.x[7+Nt+9*j]
		from = EXPv.x[8+Nt+9*j]
		synum = net.cell[ netborder.x[to] ].synCnt
		nloc = net.cell[ netborder.x[to] ].RELAR.size()
		nexin = synum / nloc
		syn = EXPv.x[10+Nt+9*j] * nexin + EXPv.x[9+Nt+9*j]
		for i = netborder.x[to], netborder.x[to+1]-1 {
		    I = -Charge.x[i][syn] /* which syn? */
		    if( I<0 ) {
			print "WARNING, I is below 0"
		    }
		    sumk = 0
		    sumTot = 0
		    //print "new cell ", i, " count = ", net.cell[i].pre_list[syn].count(), " from ", from
		    for k = 0, net.cell[i].pre_list[syn].count()-1 {
			if( from < 0 ) {
			    wf = net.cell[i].pre_list[syn].object(k).weight * net.vx
			    sumTot = sumTot + wf
			    sumk = sumk + wf
			} else {
			    cn = net.cell[i].getPreID( syn, k )
			    wf = net.cell[i].pre_list[syn].object(k).weight * rate.x[cn]
			    sumTot = sumTot + wf
			    if( cn >= netborder.x[from] && cn < netborder.x[from+1] ) {
				sumk = sumk + wf
			    }
			    //print "wf ", wf, " cn ", cn, " sumk ", sumk
			}
		    }
		    if( sumk != 0 ) {
			c2 = c2 + I * sumk / sumTot
		    }
		    //print "delta_c2 ", I * sumk / sumTot, " c2 ", c2
		    //print  "I ", I, " sumk ", sumk, " sumTot ", sumTot
		}
	    }
	}
	print "c1 ", c1
	print "c2 ", c2
	
	/* cTot */
	cTot = c1 + c2
	
	st = 2+Nt+9*Nn
	for j = 0, (EXPv.size()-st)/4-1 {
	    print "Yes, I got in here"
	    to = EXPv.x[st+4*j]
	    from = EXPv.x[st+1+4*j]
	    synum = net.cell[ netborder.x[to] ].synCnt
	    nloc = net.cell[ netborder.x[to] ].RELAR.size()
	    nexin = synum / nloc
	    syn = EXPv.x[3+st+4*j] * nexin + EXPv.x[2+st+4*j]
	    for i = netborder.x[to], netborder.x[to+1]-1 {
		I = -Charge.x[i][syn] /* which syn? */
		if( I<0 ) {
		    print "WARNING, I is below 0"
		}
		sumk = 0
		sumTot = 0
		print "new cell ", i, " count = ", net.cell[i].pre_list[syn].count(), " from ", from
		for k = 0, net.cell[i].pre_list[syn].count()-1 {
		    if( from < 0 ) {
			wf = net.cell[i].pre_list[syn].object(k).weight * net.vx
			sumTot = sumTot + wf
			sumk = sumk + wf
		    } else {
			cn = net.cell[i].getPreID( syn, k )
			wf = net.cell[i].pre_list[syn].object(k).weight * rate.x[cn]
			sumTot = sumTot + wf
			if( cn >= netborder.x[from] && cn < netborder.x[from+1] ) {
			    sumk = sumk + wf
			}
			//print "wf ", wf, " cn ", cn, " sumk ", sumk
		    }
		}
		if( sumk != 0 ) {
		    cTot = cTot + I * sumk / sumTot
		}
		print "delta_cTot ", I * sumk / sumTot, " cTot ", cTot
		print  "I ", I, " sumk ", sumk, " sumTot ", sumTot
	    }
	}
	
	if( c2+c1 > 0 ) {
	    r_c = c2/(c1+c2)
	} else {
	    r_c = 0
	}
	print "new r_c: ", r_c
	print "c1: ", c1, " = ", c1/cTot, " %"
	print "c2: ", c2, " = ", c2/cTot, " %"
	print "total current: ", cTot
	rw = -1 /* Just to say that it's not been set yet */
	
	
	/* Load vectors */
	tmp = new Vector()
	dfile.ropen("doneSoFar.txt")
	while( !dfile.eof() ) {
	    tmp.append( dfile.scanvar() )
	}
	rC1v = new Vector()
	dfile.ropen("rC1v.txt")
	while( !dfile.eof() ) {
	    rC1v.append( dfile.scanvar() )
	}
	rC2v = new Vector()
	dfile.ropen("rC2v.txt")
	while( !dfile.eof() ) {
	    rC2v.append( dfile.scanvar() )
	}

	
	
	/* The basic case when there is no g2 component. How much charge
	Ctot flows through the synapse then? */
	if( r_c == 0 ) {
	    tmp.x[101] = cTot
	    tmp.x[0] = 1
	    
	/* If g2 is present, how much g2 corresponds to x% of the current
	* Ctot and how much g1 corresponds to (100-x)% of Ctot? */
	} else {
	    
	    cTotOld = tmp.x[101] /* dvs =2757.2253 om t=10000 */
	    print "Old total current ", cTotOld
	    rw = cTot/cTotOld
	    print "new rw: ", rw
	    
	    /* Set g1, g2 values at percentage ind */
	    ind = int(100*r_c+0.5)
	    if( ind > 0 ) {
		print "ind ", ind
		rC1v.x[ind] = rC1v.x[int(100*r_cOld+0.5)] / rw
		rC2v.x[ind] = rC2v.x[int(100*r_cOld+0.5)] / rw
		print "rC1v.x[ind]: ", rC1v.x[ind]
		print "rC2v.x[ind]: ", rC2v.x[ind]
		tmp.x[ind] = 1
		if( ind < 100 ) {
		    i = tmp.c(ind+1,100).indwhere("==",1)
		    ind2 = i + ind+1
		    print "ind2 ", ind2
		    if( i>-1 && rC2v.x[ind2]-rC2v.x[ind]>0 ) {
			/* Linear interpolation to closest upper value */
			tmp2 = new Vector( ind2-ind )
			tmp2.indgen( rC2v.x[ind], (rC2v.x[ind2]-rC2v.x[ind])/(ind2-ind) )
			rC2v.copy( tmp2, ind )
		    }
		    if( i>-1 && rC1v.x[ind2]-rC1v.x[ind]<0 ) {
			tmp2 = new Vector( ind2-ind )
			tmp2.indgen( rC1v.x[ind2], -(rC1v.x[ind2]-rC1v.x[ind])/(ind2-ind) )
			rC1v.copy( tmp2.reverse(), ind+1 )
		    }
		}
		i = tmp.c(0, ind-1 ).reverse().indwhere("==",1)
		ind0 = ind-1 - i
		print "ind0 ", ind0
		if( i>-1  && rC2v.x[ind]-rC2v.x[ind0]>0 ) {
		    /* Linear interpolation to closest lower value */
		    tmp2 = new Vector( ind-ind0 )
		    tmp2.indgen( rC2v.x[ind0], (rC2v.x[ind]-rC2v.x[ind0])/(ind-ind0) )
		    rC2v.copy( tmp2, ind0 )
		}
		if( i>-1  && rC1v.x[ind]-rC1v.x[ind0]<0 ) {
		    tmp2 = new Vector( ind-ind0 )
		    tmp2.indgen( rC1v.x[ind], -(rC1v.x[ind]-rC1v.x[ind0])/(ind-ind0) )
		    rC1v.copy( tmp2.reverse(), ind0+1 )
		}
		print "Finished interpolating"
		dfile.wopen("rC1v.txt")
		print "rC1"
		rC1v.printf()
		for k = 0, rC1v.size()-1 {
		    dfile.printf( "%g\n", rC1v.x[k] )
		}
		dfile.close()
		dfile.wopen("rC2v.txt")
		print "rC2"
		rC2v.printf()
		for k = 0, rC2v.size()-1 {
		    dfile.printf( "%g\n", rC2v.x[k] )
		}
		dfile.close()
	    }	    
	}
	dfile.wopen("doneSoFar.txt")
	for k = 0, tmp.size()-1 {
	    dfile.printf( "%g\n", tmp.x[k] )
	}
	
	/* Save data about currents */
	dfile.aopen( "totCurr.txt" )
	dfile.printf( "%g\t%g\t%g\n", cTot, c1/cTot, c2/cTot )
	dfile.close()
	
	dfile.aopen( "Parameters.txt" )
	dfile.printf( "Experiment-nummer:", EXPv.x[0] ) 
	dfile.printf( "Experimentella parametrar:" )
	for i = 2, EXPv.size() {
	    dfile.printf( "%g\t", EXPv.x[i-1] )
	    if( !(i%5) || i==EXPv.size() ) {
		dfile.printf( "\n" )
	    }
	}
	dfile.printf( "cTot %g\n", cTot )
	dfile.printf( "rc1 %g\n", c1/cTot )
	dfile.printf( "rc2 %g\n", c2/cTot )
	dfile.close()
	
	dfile.aopen( "X.txt" )
	for i = 0, EXPv.size()-1 {
	    dfile.printf( "%g\n", EXPv.x[i] )
	}
	dfile.printf( "%g\n", cTot )
	dfile.printf( "%g\n", c1/cTot )
	dfile.printf( "%g\n", c2/cTot )
	dfile.close()
	dfile.aopen( "XKey.txt" )
	for i = 1, EXPv.size()-1 {
	    dfile.printf( "Experimentell parameter # %d\n", i )
	}
	dfile.printf( "cTot\n" )
	dfile.printf( "rc1\n" )
	dfile.printf( "rc2\n" )
	dfile.close()
    
	return rw
    }	
    
    proc calcCurr() {
	cTot = 0
	for i = 0, Charge.nrow()-1 {
	    for j = 0, Charge.ncol()-1 {
		cTot = cTot + Charge.x[i][j]
	    }
	}
	
	/* Save data about currents */
	dfile.aopen( "Parameters.txt" )
	dfile.printf( "Experiment-nummer:", EXPv.x[0] ) 
	dfile.printf( "Experimentella parametrar:" )
	for i = 2, EXPv.size() {
	    dfile.printf( "%g\t", EXPv.x[i-1] )
	    if( !(i%5) || i==EXPv.size() ) {
		dfile.printf( "\n" )
	    }
	}
	dfile.printf( "cTot %g\n", cTot )
	dfile.close()
	
	dfile.aopen( "X.txt" )
	for i = 0, EXPv.size()-1 {
	    dfile.printf( "%g\n", EXPv.x[i] )
	}
	dfile.printf( "%g\n", cTot )
	dfile.close()
	dfile.aopen( "XKey.txt" )
	for i = 1, EXPv.size()-1 {
	    dfile.printf( "Experimentell parameter # %d\n", i )
	}
	dfile.printf( "cTot\n" )
	dfile.close()
    }
    
    /* Does an experiment during a simulation. As such, it must 
    * be called by the Simulator object
    * 
    * Return: The next time to perform an experiment
    */
    func doEXP() { local EXP, EXPt, x, y, i, j
	EXP = EXPv.x[0]
	print "Performing experiment # ", EXP
	if( EXP == 1 ) {
	    /* calculate population vector of last 500 ms */
	    binAPs()
	    x = popVec( 500, 0, 1, t-500, t )
	    print "Population vector: ", x, " radians"
	    /* Set a cue theta rads away after 10 ms */
	    pos = int( net.thetaToCell(x,1)+(netborder.x[2]-netborder.x[1])/2-EXPv.x[3]/2 )
	    if( pos  >= netborder.x[2] ) {
		pos = pos-(netborder.x[2]-netborder.x[1])
	    } else if( pos < netborder.x[1] ) {
		pos = pos+(netborder.x[2]-netborder.x[1])
	    }
	    print "position of next cue: ", pos
	    amp = EXPv.x[4]
	    w = EXPv.x[3]
	    len = EXPv.x[2]
	    ti = t+10
	    tmp4 = new Vector(1)
	    tmp4.x[0] = 2
	    net.cue( ti, len, pos, w, amp, 1, tmp4 )
	    return 0
	} else if( EXP == 2 ) {
	    /* calculate population vector of last 500 ms for multinets */
	    binAPs()
	    x = popVec( 500, 0, -2, t-500, t )
	    print "Population vector: ", x, " radians"
	    amp = EXPv.x[4]
	    w = EXPv.x[3]
	    len = EXPv.x[2]
	    ti = t+10
	    tmp4 = new Vector(1)
	    tmp4.x[0] = 2
	    /* Set a cue theta rads away after 10 ms in all nets */
	    for i = 1, netborder.size()/2 {
		pos = int( net.thetaToCell(x,2*i-1)+(netborder.x[2*i]-netborder.x[2*i-1])/2-EXPv.x[3]/2 )
		if( pos  >= netborder.x[2*i] ) {
		    pos = pos-(netborder.x[2*i]-netborder.x[2*i-1])
		} else if( pos < netborder.x[2*i-1] ) {
		    pos = pos+(netborder.x[2*i]-netborder.x[2*i-1])
		}
		print "position of next cue: ", pos
		net.cue( ti, len, pos, w, amp, 1, tmp4 )
	    }
	    return 0
	} else if( EXP == 3 || EXP == 4 || EXP == 5 ) {
	    /* Detta experiment hittar nästa tidpunkt för av/på-stängning
	    * av strömmätning. Observera att första tidpunkten alltid är 
	    * avstängning */
	    t0 = 0
	    i = 1
	    while( t > t0 ) {
		if( i == EXPv.size() ) {
		    t0 = tStop + 10
		} else {
		    t0 = EXPv.x[i]
		    i = i + 1
		}
	    }
	    return t0
	} else {
	    return 0
	}
    }
    
    /* Sets a reference to the net object
    * 
    * Arg 1, net: The net object 
    */
    proc setNet() {
	net = $o1
    }
    
endtemplate Results

Loading data, please wait...