Fronto-parietal visuospatial WM model with HH cells (Edin et al 2007)

 Download zip file 
Help downloading and running models
Accession:98017
1) J Cogn Neurosci: 3 structural mechanisms that had been hypothesized to underlie vsWM development during childhood were evaluated by simulating the model and comparing results to fMRI. It was concluded that inter-regional synaptic connection strength cause vsWM development. 2) J Integr Neurosci: Given the importance of fronto-parietal connections, we tested whether connection asymmetry affected resistance to distraction. We drew the conclusion that stronger frontal connections are beneficial. By comparing model results to EEG, we concluded that the brain indeed has stronger frontal-to-parietal connections than vice versa.
References:
1 . Edin F, Macoveanu J, Olesen P, Tegnér J, Klingberg T (2007) Stronger synaptic connectivity as a mechanism behind development of working memory-related brain activity during childhood. J Cogn Neurosci 19:750-60 [PubMed]
2 . Edin F, Klingberg T, Stödberg T, Tegnér J (2007) Fronto-parietal connection asymmetry regulates working memory distractibility. J Integr Neurosci 6:567-96 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell; Abstract Wang-Buzsaki neuron;
Channel(s):
Gap Junctions: Gap junctions;
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Working memory; Attractor Neural Network;
Implementer(s):
Search NeuronDB for information about:  Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell;
% Att göra: 
% 1) Att läsa in och skapa ett powerspektrum för vart och ett av de
%    fyra fallen, samt olika kopplingar, precis som i figur 4a
% 2) Att läsa in och skapa DTF för vart och ett av de fyra fallen,
%    pröva några olika frekvenser


%  BADA: cue efter 2000 ms, 500 ms lång, 7000 ms långt delay
%  CUE PFC: cue efter 2000 ms, 7000 ms lång, inget delay
%  CUE PPC: cue efter 2000 ms, 7000 ms lång, inget delay
%  INGEN CUE: total tid 7000 ms.
%
%  Föreslår att vi skippar de första 500 ms på delayperioden, 
%  då får vi 4000 ms tid för varje typ




clear
filer{1}=extract_sim_dirs('MYSIMS\DTF\SIM_SERIER\SERIES_testDTF.txt');
filer{2}=extract_sim_dirs('MYSIMS\DTF\SIM_SERIER\SERIES_testDTF_CUE.txt');
titlename{1} = 'Delay';
titlename{2} = 'Cue till PFC';


% plots BUMP EEG. 
% dirname: The name of the simulation directory
% smooth =  degree of smoothing of histogram. Default = 2
%
% Version 2.0
% Author: Fredrik Edin, 2004
% Address: freedin@nada.kth.se

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%% LOAD FILES %%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
smooth = 2;

thisdir = pwd;

close all
LFP_ppc = cell(length(filer),1);
LFP_pfc = cell(length(filer),1);

for i = 1:length(filer)
    for j = 1:length(filer{i})
        
        cd( filer{i}{j} )
        
        % load data files
        load('Params.txt')
        version = Params(1);
        load('Q.txt')
        nmod = Params(2);
        if version == 3
            tStart = Params(4);
        	tmp = [ Params(1:6) ; 100 ; 100 ];
        	for k = 1:nmod
                tmp = [ tmp ; Params(3+4*k) ; 1000 ; Params(5+4*k) ];
    	        tmp = [ tmp ; Params(4+4*k) ; 1000 ; Params(6+4*k) ];
        	end
        	Params = tmp;
        elseif version == 4
            tStart = Params(4);
        	Params = [ Params(1:6) ; 100 ; 100 ; Params(7:end) ];
        elseif version == 5
            tStart = Params(4);
        end
        tStop = Params(5);
        
        
        % Name of the simulation
        filename = strcat( filer{i}{j}, '/', 'LFP_prox_dist.txt' );
        if exist(filename(1:end-4),'file')
            movefile(filename(1:end-4), filename);
        end
        tmp=load( filename );
        
        % plot the LFPgrams of the cell
        filename = strcat( filer{i}{j}, '/', 'Q.txt' );
        load( filename )
        if length(Q) > 0 %& Q(1,5) ~= 0
            % Normalize data to 0 mean and variance 1
            tmp2 = tmp(Q(1,1)-tStart+1000:Q(1,1)-tStart+5000,2);
            tmp2 = (tmp2 - mean(tmp2)) / std(tmp2);
            tmp3 = tmp(Q(1,1)-tStart+1000:Q(1,1)-tStart+5000,3);
            tmp3 = (tmp3 - mean(tmp3)) / std(tmp3);
            % Store as LFPs
            LFP_ppc{i} = [LFP_ppc{i} tmp2]; % OBS, har ar ordningen ratt igen eftersom jag anvander nya simulatorn
            LFP_pfc{i} = [LFP_pfc{i} tmp3]; % OBS, har ar ordningen ratt igen eftersom jag anvander nya simulatorn
        end
        cd( thisdir )
    end
    
    LFP_ppc{i} = LFP_ppc{i} - ones(size(LFP_ppc{i},1),1)*mean(LFP_ppc{i});
    LFP_pfc{i} = LFP_pfc{i} - ones(size(LFP_ppc{i},1),1)*mean(LFP_pfc{i});
    
end
dt = tmp(2,1)-tmp(1,1);
fS = 1000/dt;
fN = fS/2;


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%% BANDPASS %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fl = 0;  % Lower cut-off in Hz
fu = 55; % Higher cut-off in Hz

Wp = [fl fu]/fN;
fwinL = 0.005; % The width of the difference between lower pass- and stopbands
fwinU = 0.05;  % The width of the difference between upper pass- and stopbands
Ws = [];
Rp = 1;
Rs = 60;

% Create a bandpass filter
if fu == 100
    Wp(2) = [];
    Ws = min(Wp-fwinL,0.5*Wp);
    [n,Wn] = ellipord(Ws, Wp, Rp, Rs);
    [b,a] = ellip(n,1,60,Wn,'high');
else
    Ws = min(Wp(end)+fwinU,Wp(end)+0.25*(1-Wp(end)));
    if fl > 0
        Ws = [max(Wp(1)-fwinL,0.5*Wp(1)) Ws];
    else
        Wp(1) = [];
    end
    [n,Wn] = ellipord(Wp, Ws, Rp, Rs);
    [b,a] = ellip(n,1,60,Wn);
end 



       
leg = [];
wa = [];
Pp = [];
Pf = [];

for i = 1:length(LFP_pfc)
    Pp{i} = []; % Power spectrum of the 
    Pf{i} = [];
    for j = 1:size(LFP_pfc{i},2)
        filt_Lp{i}(:,j) = filter(b,a,reshape(LFP_ppc{i}(:,j),[],1));
        filt_Lf{i}(:,j) = filter(b,a,reshape(LFP_pfc{i}(:,j),[],1));
        [Pp{i}(:,j), Ppc{i}(:,2*j-1:2*j), f] = psd(filt_Lp{i}(:,j),1000,fS);
        [Pf{i}(:,j), Pfc{i}(:,2*j-1:2*j), f] = psd(filt_Lf{i}(:,j),1000,fS);
        Pp_o{i}(:,j) = psd(reshape(LFP_ppc{i}(:,j),[],1),1000,fS);
        Pf_o{i}(:,j) = psd(reshape(LFP_pfc{i}(:,j),[],1),1000,fS);
    end
end
cd(thisdir)



dt = tmp(2,1)-tmp(1,1);
% t = 0:dt:dt*(size(filt_Lp{1},1)-1);
f = 0:1:500;
color = 'rgb';
for i = 1:length(LFP_pfc)
        meanPf_o(:,i) = [mean(Pf_o{i}')]';
        meanPp_o(:,i) = [mean(Pp_o{i}')]';
end
figure(1)
clf
subplot(1,2,1)
color = 'bgrkm';
for i = 1:length(Pf_o)
    plot(f,log10(Pf_o{i})*10,'color',color(i))
    hold on
end
hold on
xlim([0 60])
ylim([-20 20])
legend({'0','100'},2)
title('PFC')
subplot(1,2,2)
for i = 1:length(Pp_o)
    plot(f,log10(Pp_o{i})*10,'color',color(i))
    hold on
end
hold on
xlim([0 60])
ylim([-20 20])
legend({'0','100'},3)
title('PPC')


cd(thisdir)




%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%% DTF %%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
thisdir = pwd;



pmin = 1;
pmax = 100;
orsel = 'fpe';


for i = 1:length(filer)
    
    A0 = [];
    A25 = [];
    
    for j = 1:1
        
        % Do ARfit for prox_dist
%         A0 = [A0 ; filt_Lp{i}(:,j) filt_Lf{i}(:,j)];
%         A25 = [A25 ; filt_Lp{i}(:,j+1) filt_Lf{i}(:,j+1)];
%         A50 = [A50 ; filt_Lp{i}(:,j+2) filt_Lf{i}(:,j+2)];
        A0 = [A0 ; LFP_ppc{i}(:,j) LFP_pfc{i}(:,j)];
        A25 = [A25 ; LFP_ppc{i}(:,j+1) LFP_pfc{i}(:,j+1)];
        
    end
    
    [w0{i},AR0{i},C0{i},SBC0,FPE0,th0]=arfit(A0,pmin,pmax,orsel,'zero');
    order0(i) = size(AR0{i},2)/2;
    [w25{i},AR25{i},C25{i},SBC25,FPE25,th25]=arfit(A25,pmin,pmax,orsel,'zero');
    order25(i) = size(AR25{i},2)/2;
%     [w50{i},AR50{i},C50{i},SBC50,FPE50,th50]=arfit(A50,pmin,pmax,orsel,'zero');
%     order50(i) = size(AR50{i},2)/2;
    
    % results of ARFIT
    disp(['Order ' titlename{i} '  0%:' int2str(order0(i))])
    disp(['Order ' titlename{i} ' 100%:' int2str(order25(i))])
%     disp(['Order ' titlename{i} ' 50%:' int2str(order50(i))])
    
end 

% Do directed transfer function
f = 0:1:50;
dt = 0.001;

for i = 1:length(filer)
    
    for j = 1:length(f)
        
        [DTF0{i}{j},H0]=DirTransFunc(AR0{i},f(j),dt);
        wp0{i}(j) = DTF0{i}{j}(2,1) - DTF0{i}{j}(1,2);
        [DTF25{i}{j},H25]=DirTransFunc(AR25{i},f(j),dt);
        wp25{i}(j) = DTF25{i}{j}(2,1) - DTF25{i}{j}(1,2);
%         [DTF50{i}{j},H50]=DirTransFunc(AR50{i},f(j),dt);
%         wp50{i}(j) = DTF50{i}{j}(2,1) - DTF50{i}{j}(1,2);
        
    end
end


style = '--';
tit = [];
for i = 1:length(filer)
    
    figure(2)
    plot(f,wp0{i},style(1:i),f,wp25{i},style(1:i))%,f,wp50{i})
    hold on
    tit = [ tit titlename{i} ' (' style(1:i) ')  ' ];
    title(tit)
    legend('0','100')%,'50')
    ylim([-1 1])
    line(xlim, [0 0], 'Color', 'k', 'Linestyle', '--')
    yl = ylim;
    xl = xlim;
    text(xl(1) + 0.9*diff(xl), yl(1) + 0.25*diff(yl), 'P->F < F->P','HorizontalAlignment', 'right')
    text(xl(1) + 0.9*diff(xl), yl(1) + 0.20*diff(yl), 'DTF > 0 means netflow goes in direction P->F','HorizontalAlignment', 'right')
    
    disp(titlename{i})
    disp(['0: ' num2str(sum(wp0{i})) ' 100: ' num2str(sum(wp25{i}))])
    
end

for i = 1:length(filer)
        
    disp([titlename{i} ' 40Hz'])
    disp(['0: ' num2str(wp0{i}(41)) ' 100: ' num2str(wp25{i}(41))])
    
end

for i = 1:length(filer)
        
    disp([titlename{i} ' Gamma'])
    disp(['0: ' num2str(sum(wp0{i}(31:end))) ' 100: ' num2str(sum(wp25{i}(31:end)))])
    
end



Loading data, please wait...