Fronto-parietal visuospatial WM model with HH cells (Edin et al 2007)

 Download zip file 
Help downloading and running models
Accession:98017
1) J Cogn Neurosci: 3 structural mechanisms that had been hypothesized to underlie vsWM development during childhood were evaluated by simulating the model and comparing results to fMRI. It was concluded that inter-regional synaptic connection strength cause vsWM development. 2) J Integr Neurosci: Given the importance of fronto-parietal connections, we tested whether connection asymmetry affected resistance to distraction. We drew the conclusion that stronger frontal connections are beneficial. By comparing model results to EEG, we concluded that the brain indeed has stronger frontal-to-parietal connections than vice versa.
References:
1 . Edin F, Macoveanu J, Olesen P, Tegnér J, Klingberg T (2007) Stronger synaptic connectivity as a mechanism behind development of working memory-related brain activity during childhood. J Cogn Neurosci 19:750-60 [PubMed]
2 . Edin F, Klingberg T, Stödberg T, Tegnér J (2007) Fronto-parietal connection asymmetry regulates working memory distractibility. J Integr Neurosci 6:567-96 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell; Abstract Wang-Buzsaki neuron;
Channel(s):
Gap Junctions: Gap junctions;
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Working memory; Attractor Neural Network;
Implementer(s):
Search NeuronDB for information about:  Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell;
function showSimulation( dirname, pr, wh, no, smooth )

% plots BUMP-data. For version 1-5 of working memory
% network simulator.
% dirname: The name of the simulation directory
% pr = 0 --> merely display figures
% pr = 1 --> print
% pr = 2 --> print and save to file
% pr = 3 --> save to file
% If wh = 0 or nothing  --> print only figures 5 and 6
%    wh = 1             --> print all figures
%    wh = 2             --> print only figure 7
% no = number of enlargements of activity. Default = 5
% smooth =  degree of smoothing of histogram. Default = 2
%
% Version 2.0
% Author: Fredrik Edin, 2004
% Address: freedin@nada.kth.se


if nargin < 2 | nargin > 5
    disp( 'usage1: showSimulation( dirname, pr ), ' )
    disp( 'pr = 0: Only show' )
    disp( 'pr = 1: Print figures 5 & 6' )
    disp( 'pr = 2: Print and save figures 5 & 6' )
    disp( 'pr = 3: Save figures 5 & 6' )
    disp( '  ' )
    disp( 'usage2: showSimulation( dirname, pr, wh ), ' )
    disp( 'wh = 0: As above' )
    disp( 'wh = 1: Also print and/or save figure 7' )
    disp( 'wh = 2: Print and/or save only figure 7' )
    disp( '  ' )
    disp( 'usage3: showSimulation( dirname, pr, wh, no ), ' )
    disp( 'no = number of enlargements of the rastergram.' )
    disp( '  ' )
    disp( 'usage4: showSimulation( dirname, pr, wh, no, smooth ), ' )
    disp( 'smooth = number of cells making up a point in the rastergram.' )
    return
end

if nargin < 3
    wh = 0;
end
if nargin < 4
    no = 5;
end
if nargin < 5
    smooth = 2;
end
screensize = get( 0, 'ScreenSize' );


% Determine whether to print or not. If yes, another window must be made
% so that both figures can be printed on the same page
P = pr>0 & wh<2; 
thisdir = pwd;
cd( dirname )

% load data files
load Params
version = Params(3);
if version == 6
    EXP_dt = 100;
    Params = [Params(1:7) EXP_dt Params(8:end) ];
end
load Connections
load C
C = [ reshape( C, 25, length(C)/25 ) ]';
load Q
nmod = Params(4);

% Name of simulation
fid = fopen( 'Parameters' );
fileName = pwd;
fileName( find( fileName == '.' ) ) = ',';

% printTitleName is the file name but changed into TeX format,
% so that TeX characters like _ and \ are changed inte \_ and \\
if ispc
    printFileName = [];
    ind = find( fileName == '\' );
    ind = [ 1 ind length( fileName ) ];
    for i = 1:length( ind )-1
        printFileName = [ printFileName fileName(ind(i):ind(i+1)) ];
    end
else
    printFileName = fileName;
end
fileName = printFileName;
ind = [ find( fileName == '_' | fileName == '^' ) length(fileName)+1 ];
printFileName = fileName(1:ind(1)-1);
for i = 1:length( ind ) - 1
    printFileName = [ printFileName '\' fileName(ind(i):ind(i+1)-1) ];
end


% Window placement
figs = get( 0, 'Children' );
for i = 1:length( figs ) 
    if figs(i) >= 5 & figs(i) <= 10
        close( figs(i) )
    end
end
if P  % Create figure for printing
    figure(8)
    clf
    set( 8, 'Position', [ 0 100 720 852 ] )
end
figure(5)
clf
set( 5,'Position', [ 0.01*screensize(3) 0.3*screensize(4) 0.5*screensize(3) 0.61*screensize(4) ] );
set( 5, 'Name', 'CONNECTIONS' )
set( 5, 'NumberTitle', 'off' )

% Network connection plot
nmod = Params(4);
minw = 0; % minw and maxw are the limits of the footprint diagram
maxw = 0;% They are scaled to the largest and smallest values of the footprint.
netborder = [ 0 ; Params( 13:3:end ) ];
netborder = cumsum( netborder );
xp = 0:1/(1+nmod):1;


% Create population structs (rings with I:s or E:s in connection diagram)
% struct variables:
% label: The cell type
% x, y: Position in the connection diagram
% radius: ring radius
% N: Number of cells in population
% ar: Arrows entering population
% in: The populations having incoming arrows to this population
rad = 0.1/nmod;
arrowind = 65; % Capital A
arrows = [];
diagram = [];
for i = 1:nmod
    if Params(5+6*i) == 1
        str = 'I-1';
    elseif Params(5+6*i) == 2
        str = 'I-IF';
    end
    pop(2*i-1) = struct( 'label', str, 'x', xp(i+1), 'y', 0.3, 'radius', rad, 'N', ...
                         Params(7+6*i), 'ar', [], 'in',[] );
    if Params(8+6*i) == 0 
        str = 'E-1';
    elseif Params(8+6*i) == 1 % Type of E-cell
        str = 'E-3';
    elseif Params(8+6*i) == 2 
        str = 'E-IF';
    end
    pop(2*i) = struct( 'label', str, 'x', xp(i+1), 'y', 0.7, 'radius', rad, 'N', ...
                       Params(10+6*i), 'ar', [], 'in', [] );
end


% Create arrows between populations. Every row in C contains a connection between
% cell populations = an arrow in the connection diagram. Every arrow is a
% struct with these variables
% pre: pre-population index. If prepopulation is 0 (external stimulation), pre is a negative number 
%        the positive value of which defines an angle
% post: the post population
% label: Every arrow has a label with either the connection weight (if
%           connection is flat), or a letter with an index to a plot showing the connection footprint.
% diag: The index of the diagram with the connection footprint, if there is one.
%
% If a connection is not flat, a diagram struct is created. That has a
% number of variables needed to plot the footprint.
for i = 1:size( C, 1 )
    postmod = C(i,1);
    premod = C(i,2);
    for j = 1:4
        pre = 2*(premod-1)+mod( j+1, 2 )+1; % Netborder indices of population
        post = 2*(postmod-1)+(j>2)+1;
        w = C(i,9+j);
        Jp = C(i,11+3*j);
        Jm = C(i,12+3*j);
        sgm = C(i,13+3*j);
        
        if w > 0 % there is a connection

            if ~pre % If pre is external, then it must define an angle
                pre = -(4/3-mod(post-1,2))*pi;
                %pre = -(3-mod(post-1,2))*pi/3;
            end
            % Determine labpos, position of arrow label. So that labels
            % will always be printed close to the arrowhead on the correct
            % side, 
            if pre<1
                labpos = mod( mod( post-1,2 ) - post>2, 2 ); % All external arrows to the left
            elseif pre == 3 | pre == 2
                labpos = 1;
            elseif pre == 1 | pre == 4   
                labpos = 0;
            end
            if mod( post, 2 ) == mod( pre, 2 )
                labpos = 1-labpos;
            end
            if pre == post
                labpos = -(5/3-mod(post-1,2))*pi;
            end
            
            % If connection footprint is not flat, display it. Otherwise
            % just show connection strength
            if Jp >= 0 & Jp ~= 1
                lab = char( arrowind );
                arrowind = arrowind + 1;
                ind = find( Connections(:,1) >= netborder( post ) & ...
                            Connections(:,1) < netborder( post+1 ) & ...
                            Connections(:,2) >= netborder(pre) & ...
                            Connections(:,2) < netborder(pre+1) );
                ind = ind(1:pop(pre).N);
                W = Connections(ind,4);
                ang = Connections(ind,3);
                % REMOVE paramind if it is not used
                diagram = [ diagram struct( 'label', lab, 'pre', pre, 'post', post, ...
                            'paramind', j, 'W', W, 'w', w, 'angle', ang, 'Jp', Jp, 'Jm', Jm', 'sgm', sgm ) ];
                minw = min( min( minw, W ) ); 
                maxw = max( max( maxw, W ) );
            else
                lab = sprintf( '%.2g', w );
            end
            % Label is always placed immediately after arrow head
            % Labpos = 0 --> left of arrow head
            %        = 1 --> right of arrow head
            % If pre and pos are equal, then labpos specifies the
            % incidence angle in radians-
            % A negative value of pre indicates the (positive) angle of incidence to 
            % post and is used when there exists no pre.             
            arrows = [ arrows struct( 'pre', pre, 'post', post, 'label', lab, 'labpos', labpos, 'diag', length( diagram ) ) ];
            if pre > 0
                pop(pre).ar = [ pop(pre).ar length(arrows) ];
            end
            pop(post).in = [pop(post).in arrows( end ).pre ];
        end
    end
end

% Plot network architecture figure
len = length( diagram ) + 1;
m = sum( C(:,3) > 0 ); % There exist delay distributions
tot = (3+ m + len); % Total number of subplots
hand = zeros( tot*(P+1) ); % Handles to subplots in the diagram

pos = get( gca, 'Position' ); 
hgt = pos(4);
btt = pos(2);
for h = 0:P
    figure(5+3*h)
    pos(4) = hgt*(1-0.7*h);
    pos(2) = btt+0.7*hgt*h;
    
    % create subplots in correct positions
    % hand(1): title
    % hand(2): connection diagram
    % hand(3-x): delay diagrams if there exists delay distributions
    % hand(x+1 alt 3): parameter text
    % the rest: footprint plots
    spac1 = 0.03; 
    spac2 = 0.06;
    spac3 = 0.05;
    spac4 = 0.6*h; % Height of evolution-of-firing-rate-figure 
    hand(1+tot*h) = axes( 'Position', [ 0, 0.95, 1, 0.03 ] );
    hand(2+tot*h) = subplot( 'Position', [ 0.25+spac1, 2*spac1+spac4*h, 0.5-2*spac1, 0.95-3*spac1-0.3*(m>0)-spac4 ] );
    p1 = 0.25+2*spac1; % Left edge of delay distribution diagram
    w = 0.25-3*spac1;
    for i = 1 : m
        hand(2+i+tot*h) = subplot( 'Position', [ p1, 0.95+(spac2-0.3)*(1-spac4), w, (0.3-2*spac1-spac2)*(1-spac4) ] );
        p1 = p1 + w + spac1;
    end
    n1 = floor( len / 2 );
    n = n1;
    for k = 0:1 % Footprint diagrams are created, first on the left side, then on the right
        for j = 1:n
           height = (0.9-spac3)/n;
           hand(m+2+j+k*n1+tot*h) = subplot( 'Position', [ 0.75*k+spac1, 0.95+(-j*height+spac2)*(1-spac4), 0.25-2*spac1, (height-2*spac2)*(1-spac4) ] );
        end
        n = len - n;
    end
   
    % Plot titel
    subplot( hand(1+tot*h) )
    t0 = text( 0.5, 0.5, printFileName, 'FontSize', 14, 'HorizontalAlignment', ...
	       'center' );
    set( hand(1+tot*h), 'Visible', 'off' )
    
    % Plot connection diagram
    cd( thisdir )
    subplot( hand(2+tot*h) )
    plotPop(pop)
    hold on
    plotArrows( arrows, pop )
    set( gca, 'XTick', [] )
    set( gca, 'YTick', [] )
    if h
        axis off
    end
    
    % Plot delay distributions
    k = 0;
    My = 0;
    for i = 1:size( C, 1 )
        dist = C( i, 3 ); % type of distribution
        mu = C( i, 4 ); % mean delay
        if dist > 0
            k = k + 1;
            axes( hand(2+k+tot*h) )
            xlabel( 'tid (s)' )
            str = sprintf( 'Delay modul %d - %d', C(i,2), C(i,1) );
            title( str )
        end
        if dist == 1 % Delta distribution
            line( [mu mu], [0 1] )
        elseif dist == 2 % Gamma distribution
            s2 = C(i, 5); % variance of delay distribution
            xm = mu+3*sqrt( s2 );
            dx = xm/1000;
            x = dx:dx:xm;
            y = gammadist(x,mu,s2);
            My = max( max(y), My );
            plot( x, y ) 
            set( gca, 'XLim', [0 2*mu ] );
            
            % Plot mean and standard deviation of distributions
            e1 = sum(x.*y)*dx;
            e2 = sum(x.*x.*y)*dx;
            s = sqrt(e2-e1*e1);
            line( e1*[1 1], My/4*[0.7 1.3], 'Color', 'r' )
            line( [e1-s e1+s], My/4*[1 1], 'Color', 'r' )
            line( (e1-s)*[1 1], My/4*[1.1 0.9], 'Color', 'r' )
            line( (e1+s)*[1 1], My/4*[1.1 0.9], 'Color', 'r' )
        end
        if k == 1
            ylabel( 'sannolikhetstathet' )
        else
            set( gca, 'YTickLabel', [] )
        end
    end
    if My > 0
        for i = 1:m
            set( hand(2+i+tot*h), 'YLim', [0 1.5*My] )
        end
    end
    
    % Plot other parameters
    tstart = Params(5);
    tstop = Params(6);
    dt = Params(7);
    subplot( hand( m+3+h*tot ) )
    str = sprintf( 'Parametrar:\n %s\ntstop: %s\ndt: %s\n', int2str( Params(5) ), ...
        int2str( Params(6) ), num2str( Params(7) ) );
    midx = get( gca, 'XLim' );
    midy = get( gca, 'YLim' );
    midx = (midx(1)+midx(2))/2;
    midy = (midy(1)+midy(2))/2;
    tx1 = text( midx, midy, str, 'HorizontalAlignment', 'center', ...
		'VerticalAlignment', 'middle' );
    set( gca, 'Visible', 'off' )
    set( gca, 'FontSize', 14 )
    
    % Plot connection footprint curves
    for j = 1:len-1
        subplot( hand (m+3+j+tot*h)  )
        plot( [0 2*pi], [1 1]*mean(diagram(j).W), 'r--' )
        hold on
        N = pop( diagram(j).pre ).N;
        plot( diagram(j).angle, diagram(j).W );
        set( gca, 'XLim', [0 2*pi] )
        set( gca, 'YLim', 1.1*[minw maxw] )
        set( gca, 'YTickLabel', [] )
        str = sprintf( 'w: %s\nJp: %s\nJm: %s\n%s: %s', num2str( diagram(j).w ), num2str( diagram(j).Jp ), ...
                       num2str( diagram(j).Jm ), '\sigma', num2str( diagram(j).sgm ) );
        tx(j) = text( 0.05*pi, minw+1.05*(maxw-minw), str, 'VerticalAlignment', 'top' );
        tx(len-1+j) = text( 1.8*pi, minw+1.05*(maxw-minw), diagram(j).label, 'VerticalAlignment', ...
            'top', 'HorizontalAlignment', 'right', 'FontSize', 14, 'LineWidth', 2 );
        if j == n1-1 | j == len-1 
            xlabel( 'Vinkel (rad)' )
        end
    end
end


% Plot network activity figure
cd( dirname )
figure(6)
clf
set( 6,'Position', [ 0.5*screensize(3) 0.47*screensize(4) 0.5*screensize(3) 0.40*screensize(4) ] );
set( 6, 'Name', 'RASTER' )
set( 6, 'NumberTitle', 'off' )
pos = get( gca, 'Position' );
hgt = pos(4);
btt = pos(2);
w = pos(3);
pos(3) = w*0.7;
for i = 0:P
    pos(4) = hgt*(1-(1-spac4*0.9)*i);
    figure( 6+2*i )
    hand(1+10*i) = subplot( 'Position', pos );
end
load APs
x = APs(:,1);
y = APs(:,2);
if exist( 'Q' ) == 1 & size( Q,2 ) == 5
    [ tQ p ] = min( Q(:,1) );
else
    tQ = tstop;
end

% Plot data
pos(1) = pos(1)+0.7*w;
pos(3) = 0.3*w;
for i = 0:P
    figure( 6+2*i )
    % Plot rastergram
    subplot( hand( 1+10*i ) )
    plot( x, y, 'o', 'MarkerSize', 2 )
    grid on
    ylabel( 'cell #', 'FontSize', 14 )
    title( 'Rastergram for E- och I-cellspopulationerna', 'FontSize', 14 )
    xlabel( 'tid (ms)', 'FontSize', 14 )
    set( gca, 'FontSize', 14 )
    set( gca, 'XLim', [tstart tstop] )
    box on
    
    % plot cue
    if exist( 'Q' ) == 1 & size( Q,2 ) == 5
        ln = [];
        ln = [ ln ; line( [ Q(:,1), Q(:,1)+Q(:,2) ]', [ Q(:,3), Q(:,3) ]') ];
        ln = [ ln ; line( [ Q(:,1), Q(:,1)+Q(:,2) ]', [ Q(:,3)+Q(:,4), Q(:,3)+Q(:,4) ]') ];
        ln = [ ln ; line( [ Q(:,1), Q(:,1) ]', [ Q(:,3), Q(:,3)+Q(:,4) ]') ];
        ln = [ ln ; line( [ Q(:,1)+Q(:,2), Q(:,1)+Q(:,2) ]', [ Q(:,3), Q(:,3)+Q(:,4) ]' ) ];
        for j = 1:size( Q, 1 )
            txt = sprintf( '%s uA/mc2', num2str( Q(j,5) ) );
            text( Q(j,1), Q(j,3), txt, 'HorizontalAlignment', 'right' )
        end
        set( ln, 'Color', 'r' )
        set( ln , 'LineStyle', '-.' )
    end
    
    % create histogram subplot
    pos(4) = hgt*(1-(1-spac4*0.9)*i);
    hand(2+10*i) = subplot( 'Position', pos );
    hold on
    grid on
    set( hand(2+10*i), 'XTick', [0:2.5:65] )
    set( hand(2+10*i), 'XTickLabel', ['  ';'  ';' 5';'  ';'10';'  ';'15';'  ';'20';'  ';'25';'  ';'30';'  ';'35';'  ';'40';'  ';'45';'  ';'50';'  ';'55';'  ';'60';'  ';'65'] )
    set( hand(2+10*i), 'YAxisLocation', 'right' )
    set( gca, 'FontSize', 14 )
    xlabel( 'f (Hz)' )
    title( 'Histogram' )

    % Continue plotting rastergram and histogram
    NN = 0;
    for k = 1:nmod
      % plot lines in rastergram as well as text
      subplot( hand( 1+10*i ) )
      NI = pop(2*k-1).N;
      NE = pop(2*k).N;
      N = NE+NI;
      NN = NN + N;
      xx = find( y>=NN-N & y<NN );
      yy = y(xx);
      xx = x(xx);
      fS = length( find( yy>=NN-NE & yy<NN & xx< tQ & xx > tstart) )/(NE*(tQ-tstart)/1000);
      if exist( 'Q' ) & size(Q,2) == 5
          fD = length( find( yy>=NN-NE & yy<NN & xx>tQ + Q(p,2) ) )/(NE*(tstop-tQ+Q(p,2))/1000);
      else
          fD = 0;
      end
      fI = length( find( yy<NN-NE ) )/(NI*(tstop-tstart)/1000);
      line( [0 tstop], [NN-NE-0.5 NN-NE-0.5], 'Color', 'k', 'LineWidth', 2 )
      if NN > N
          line( [0 tstop], [NN-N-0.5 NN-N-0.5], 'Color', 'k', 'LineWidth', 2 )
      end
      tI = text( 0.1*tstop, NN-NE-0.05*NI, 'I', 'FontSize', 16, 'FontWeight', 'Bold', 'VerticalAlignment', 'top' ); 
      tE = text( 0.1*tstop, NN-0.05*NI, 'E', 'FontSize', 16, ...
		 'FontWeight', 'Bold', 'VerticalAlignment', 'top' );
      
      % Histogram
      % Show connection curve E->E
      % Find the cell with maximum activity to center connection curve on
      % that one.
      subplot( hand(2+10*i) )
      if version == 0
          ind = 1;
          xC = Ee0N( :,1 );
          yC = Ee0N( :,2 );
      else
          tmp = find( pop( 2*k ).in == 2*k ); % Find E->E curve
          if ~isempty( tmp )  
              ind(k) = tmp(1);
              arr = pop( 2*k ).ar;
              xC = diagram( arrows( arr( ind(k) ) ).diag ).angle;
              yC = diagram( arrows( arr( ind(k) ) ).diag ).W;
          else
              xC = [0 2*pi];
              yC = [0 0];
          end
      end
      hind = NN-N-1:NN;
      h = histc( y, hind );
      h=h(2:end-1)/(tstop/1000);
      hind = hind(2:end-1);

      mm = find( h(NI+1:end) == max(h(NI+1:end) ) );
      mm = mm(1); % Index of cell with maximum activity
      M = max( 20, 10*ceil( max( h )/10 ) );
      xC = xC*(NE/N)/(2*pi/N); %Adjust width of curve
      xC = xC-NE/2+mm+NN-NE-1; % Midpoint position of connection curve at maximum activity (NN-NE-1)
      ind1 = find( xC<NN-NE );
      xC( ind1 ) = xC( ind1 ) + NE;
      ind2 = find( xC>=NN );
      xC( ind2 ) = xC( ind2 ) - NE; 
      if max( yC ) > 0 
          fac = 1/max(yC)*h(floor(mm+NI));
          yC = yC*fac;
      end
      [ xC ind ] = sort( xC );
      yC = yC(ind);
    
      %plot connection curve and show mean value of that curve 
      plot( h(1:NI), hind(1:NI) )
      plot( h(NI+1:end), hind(NI+1:end) )
      plot( yC, xC, '--' )
      meanW = mean( yC );
      plot( [meanW meanW], [NN-NE NN-1], 'r--' )

      line( [0 65], [NN-NE-0.5 NN-NE-0.5], 'Color', 'k', 'LineWidth', 2 )
      if NN > N
          line( [0 65], [NN-N-0.5 NN-N-0.5], 'Color', 'k', 'LineWidth', 2 )
      end
      str = sprintf( 'fS: %.1f\nfD: %.1f\nfI: %.1f\n', fS, fD, fI );
      tx = text( 0.6*M, NN-0.05*NI, str, 'FontSize', 14, 'VerticalAlignment', 'top' );
    end
    box on
    line( [0.01*M 0.01*M], [0 NN], 'Color', 'k', 'LineWidth', 2 )
    set( gca, 'YLim', [0 NN] )
    set( hand(2+10*i), 'XLim', [0 M] )
    set( hand( 1+10*i ), 'YLim', [0 NN] )
end

% DENNA SKA VERKLIGEN GORAS OM
% Utveckling av aktivitet i figur 7, visad i en serie histogram
figure(7)
clf
set( 7,'Position', [ 0.5*screensize(3) 0.05*screensize(4) 0.5*screensize(3) 0.43*screensize(4) ] );
set( 7, 'Name', 'ACTIVITY EVOLUTION' )
set( 7, 'NumberTitle', 'off' )
t0 = [ tstart : (tstop-tstart)/no : tstop ];
tlen = diff( t0 );
t0 = sort( [ t0 t0(2:end-1) ] );
smooth = 4; % To get a smoother histogram
color = 'ybrkg';
M = 0;
h = subplot( 'Position', [ 0.13 0.2 0.75 0.67 ] );
for i = 1:no
    %histogram
    t = find( x>=t0(2*i-1) & x<t0(2*i) );
    hind = 0:smooth:netborder(end);
    if length( y(t) ) > 0
        h = histc( y(t), hind );
        h=h(2:end-1)/(tlen(i)*smooth/1000);
        M = max( M, max( h ) );
        hind = hind(2:end-1);
        hold on
        hand7(i) = plot( hind(1:netborder(end)/smooth-1), h(1:netborder(end)/smooth-1), 'Color', color(mod(i,length(color))+1) );
        grid on
    end
end
for i = 2:length( netborder )-1
    line( [netborder(i)-0.5 netborder(i)-0.5], [0 65], 'Color', 'k', 'LineWidth', 2 )
end
box on

%set( gca, 'YTick', [10 20 30 40 50] )
%set( gca, 'YTickLabel', ['  ';'10';'20';'30';'40';'50'] )
set( gca, 'XLim', [0 netborder(end)] )
set( gca, 'YLim', [0 1.3*M] )
%set( gca, 'XTick', [0:20:NN] )
%set( gca, 'XTickLabel', [] )
%set( gca, 'YAxisLocation', 'top' )
set( gca, 'FontSize', 14 )
t = text( 1.1*netborder(end), 0.5*(1.3*M), printFileName, 'Rotation', 90, 'FontSize', 14, 'HorizontalAlignment', 'center' );
title( 'Utveckling av nataktiviteten', 'FontSize', 14 )
xlabel( 'Cell index' )
ylabel( 'Frekvens (Hz)' )
strmat = [];
len = length( [ int2str( t0(end) ) int2str( t0(end-1) ) ] ) + 3;
padding = '        ';
for i = 1:2:length( t0 )
    str = [int2str(t0(i)) '-' int2str(t0(i+1)) 'ms' ];
    str = [ padding( 1:len-length(str) ) str ];
    strmat = [ strmat ; str ];
end
l = legend( hand7, strmat );

if P
    name = strcat( fileName, 'Page1.eps' ); 
    figure(8)
    set( 8, 'PaperUnits', 'centimeters' );
    set( 8, 'PaperType', 'A4');
    papersize = get( 8, 'PaperSize' );
    marg = 0.03;
    left = marg;
    width = papersize( 1 ) - 2 * left;
    bottom = marg;
    height = papersize( 2 ) - 2 * marg;
    myfiguresize = [ left, bottom, width, height ];
    set( 8, 'PaperPosition', myfiguresize );
    if pr < 3
        print
    end
    if pr > 1
        print( '-depsc2', name )
    end
    close( 8 )
end

if pr & wh > 1
    name = strcat( fileName, 'Page1.eps' ); 
    figure(7)
    set( 7, 'PaperUnits', 'centimeters' );
    set( 7, 'PaperType', 'A4');
    set( 7,'PaperOrientation','landscape');
    papersize = get( 7, 'PaperSize' );
    marg = 0.05;
    left = marg;
    width = papersize( 1 ) - 2 * left;
    bottom = marg;
    height = papersize( 2 ) - 2 * marg;
    myfiguresize = [ left, bottom, width, height ];
    set( 7, 'PaperPosition', myfiguresize );
    if pr < 3
        print
    end
    if pr > 1
        print( '-depsc2', name )
    end
end

cd( thisdir )

% Make figures lie on top of eachother
% in the right order
figure(6)
figure(5)

men = uimenu( 'Label', 'F&unctions' );
uimenu( men, 'Label', '&Power spectrum', 'Callback', 'menuCall(''corr'')');
uimenu( men, 'Label', 'Network &autocoherence', 'Callback', 'menuCall(''acoher'')');
uimenu( men, 'Label', 'Network cross co&herence', 'Callback', 'menuCall(''crcoher'')');
uimenu( men, 'Label', 'Network cross &correlation', 'Callback', 'menuCall(''crcorr'')');
uimenu( men, 'Label', '&Advanced', 'Callback', 'menuCall(''advanced'')');
uimenu( men, 'Label', '&Bold', 'Callback', 'menuCall(''bold'')');
% Since this is a function, while the menus will be called from outside
% the function, we can only pass variables to the function called from the 
% menu by saving these variables in a file called menuvar.mat. Please feel
% free to add any number of desired variables.
save menuvar APs netborder tstart tstop Q dirname

Loading data, please wait...