Citation Relationships



Morrison A, Aertsen A, Diesmann M (2007) Spike-timing-dependent plasticity in balanced random networks. Neural Comput 19:1437-67[PubMed]

References and models cited by this paper

References and models that cite this paper

Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464-72 [PubMed]

Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2:32-48 [PubMed]

Braitenberg V, Schuz A (1998) Cortex Statistics and Geometry of Neuronal Connectivity 2nd ed

Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci 8:183-208 [Journal] [PubMed]

   Sparsely connected networks of spiking neurons (Brunel 2000) [Model]

Brunel N, Hakim V (1999) Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput 11:1621-71 [Journal] [PubMed]

   Fast global oscillations in networks of I&F neurons with low firing rates (Brunel and Hakim 1999) [Model]

Burkitt AN, Meffin H, Grayden DB (2004) Spike-timing-dependent plasticity: the relationship to rate-based learning for models with weight dynamics determined by a stable fixed point. Neural Comput 16:885-940 [PubMed]

Debanne D, Gahwiler BH, Thompson SM (1998) Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J Physiol 507 ( Pt 1):237-47 [PubMed]

Feldman DE (2000) Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27:45-56 [PubMed]

Fetz EE, Toyama K, Smith WS (1991) Synaptic interactions between cortical neurons Cerebral Cortex, Peters A:Jones EG, ed. pp.1

Froemke RC, Dan Y (2002) Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416:433-8 [PubMed]

Gerstner W, Kempter R, van Hemmen JL, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383:76-81 [PubMed]

Gutig R, Aharonov R, Rotter S, Sompolinsky H (2003) Learning input correlations through nonlinear temporally asymmetric Hebbian plasticity. J Neurosci 23:3697-714 [PubMed]

Guyonneau R, VanRullen R, Thorpe SJ (2005) Neurons tune to the earliest spikes through STDP. Neural Comput 17:859-79 [PubMed]

Hertz J, Prugel-Bennett A (1996) Learning short synfire chains by self-organization. Network 7:357-63

Iglesias J, Eriksson J, Grize F, Tomassini M, Villa AE (2006) Dynamics of pruning in simulated large-scale spiking neural networks. Biosystems 79:11-20

Izhikevich EM, Desai NS (2003) Relating STDP to BCM. Neural Comput 15:1511-23 [PubMed]

Izhikevich EM, Gally JA, Edelman GM (2004) Spike-timing dynamics of neuronal groups. Cereb Cortex 14:933-44 [PubMed]

Kempter R, Gerstner W, van Hemmen JL (2001) Intrinsic stabilization of output rates by spike-based Hebbian learning. Neural Comput 13:2709-41 [PubMed]

Kempter R, Gerstner W, van_Hemmen JL (1999) Hebbian learning and spiking neurons Physical Review E 59:4498-4514 [Journal]

Kistler WM, van Hemmen JL (2000) Modeling synaptic plasticity in conjuction with the timing of pre- and postsynaptic action potentials. Neural Comput 12:385-405 [PubMed]

Levy N, Horn D, Meilijson I, Ruppin E (2005) Distributed synchrony in a cell assembly of spiking neurons. Neural Netw 14:815-24 [PubMed]

Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213-5 [PubMed]

Mehring C, Hehl U, Kubo M, Diesmann M, Aertsen A (2003) Activity dynamics and propagation of synchronous spiking in locally connected random networks. Biol Cybern 88:395-408 [PubMed]

Morrison A, Mehring C, Geisel T, Aertsen AD, Diesmann M (2005) Advancing the boundaries of high-connectivity network simulation with distributed computing. Neural Comput 17:1776-801 [PubMed]

Morrison A, Straube S, Plesser HE, Diesmann M (2007) Exact subthreshold integration with continuous spike times in discrete-time neural network simulations. Neural Comput 19:47-79 [PubMed]

Rubin J, Lee DD, Sompolinsky H (2001) Equilibrium properties of temporally asymmetric Hebbian plasticity. Phys Rev Lett 86:364-7 [PubMed]

Sjostrom PJ, Turrigiano GG, Nelson SB (2001) Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32:1149-64 [PubMed]

Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci 3:919-26 [PubMed]

Tetzlaff T, Morrison A, Timme M, Diesmann M (2005) Heterogeneity breaks global synchrony in large networks Proc 30th Gottingen Neurobiology Conference. Available online at http:--www.neuro.unigoettingen.de-nbc.php?sel=archiv

Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391:892-6 [PubMed]

van Rossum MC, Bi GQ, Turrigiano GG (2000) Stable Hebbian learning from spike timing-dependent plasticity. J Neurosci 20:8812-21 [PubMed]

van Vreeswijk C, Sompolinsky H (1996) Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274:1724-6 [PubMed]

van Vreeswijk C, Sompolinsky H (1998) Chaotic balanced state in a model of cortical circuits. Neural Comput 10:1321-71 [PubMed]

Wang HX, Gerkin RC, Nauen DW, Bi GQ (2005) Coactivation and timing-dependent integration of synaptic potentiation and depression. Nat Neurosci 8:187-93 [PubMed]

Zhang LI, Tao HW, Holt CE, Harris WA, Poo M (1998) A critical window for cooperation and competition among developing retinotectal synapses. Nature 395:37-44 [PubMed]

Brette R, Goodman DF (2011) Vectorized Algorithms for Spiking Neural Network Simulation. Neural Comput [Journal] [PubMed]

   Vectorized algorithms for spiking neural network simulation (Brette and Goodman 2011) [Model]

Clopath C, Busing L, Vasilaki E, Gerstner W (2010) Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat Neurosci 13:344-52 [Journal] [PubMed]

   Voltage-based STDP synapse (Clopath et al. 2010) [Model]

Gilson M, Masquelier T, Hugues E (2011) STDP Allows Fast Rate-Modulated Coding with Poisson-Like Spike Trains PLoS Comput Biol 7(10):e1002231 [Journal]

   STDP allows fast rate-modulated coding with Poisson-like spike trains (Gilson et al. 2011) [Model]

Legenstein R, Pecevski D, Maass W (2008) A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback. PLoS Comput Biol 4:e1000180 [Journal] [PubMed]

   Reward modulated STDP (Legenstein et al. 2008) [Model]

Potjans TC, Diesmann M (2014) The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model. Cereb Cortex 24:785-806 [Journal] [PubMed]

   A full-scale cortical microcircuit spiking network model (Shimoura et al 2018) [Model]

Richert M, Nageswaran JM, Dutt N, Krichmar JL (2011) An efficient simulation environment for modeling large-scale cortical processing. Front Neuroinform 5:19 [Journal] [PubMed]

   Efficient simulation environment for modeling large-scale cortical processing (Richert et al. 2011) [Model]

Sadeh S, Clopath C, Rotter S (2015) Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity. PLoS Comput Biol 11:e1004307 [Journal] [PubMed]

   Functional balanced networks with synaptic plasticity (Sadeh et al, 2015) [Model]

Tomm C, Avermann M, Petersen C, Gerstner W, Vogels TP (2014) Connection-type-specific biases make uniform random network models consistent with cortical recordings J Neurophysiol, in press

Vasilaki E, Giugliano M (2014) Emergence of connectivity motifs in networks of model neurons with short- and long-term plastic synapses. PLoS One 9:e84626 [Journal] [PubMed]

   Emergence of Connectivity Motifs in Networks of Model Neurons (Vasilaki, Giugliano 2014) [Model]

(44 refs)