Citation Relationships



Andelic E, Schafföner M, Katz M, Krüger SE, Wendemuth A (2006) Kernel least-squares models using updates of the pseudoinverse. Neural Comput 18:2928-35 [PubMed]

References and models cited by this paper

References and models that cite this paper

Ben-Israel A, Greville TNE (1977) Generalized inverses: Theory and applications

Billings SA, Lee KL (2002) Nonlinear fisher discriminant analysis using a minimum squared error cost function and the orthogonal least squares algorithm. Neural Netw 15:263-70 [PubMed]

de Kruif BJ, de Vries TA (2003) Pruning error minimization in least squares support vector machines. IEEE Trans Neural Netw 14:696-702 [Journal] [PubMed]

Duda RO, Hart PE (1973) Pattern Classification and Scene Analysis

Hoegaerts L, Suykens JAK, Vanderwalle J, De_Moor B (2004) A comparison of pruning algorithms for sparse least squares support vector machines Proc 11th Intl Conf Neural Inform Proc

Mallat SG, Zhang Z (1993) Matching pursuits with time-frequency dictionaries IEEE Transactions On Signal Processing 41:3397-3415

Mercer J (1909) Functions of positive and negative type and their connections tothe theory of integral equations Philos Trans Roy Soc 209:415-446

Mika S (2002) Kernel fisher discriminants Unpublished doctoral dissertation

Nair P, Choudhury A, Keane AJ (2002) Some greedy learning algorithms for sparse regression and classification with Mercer kernels J Mach Learn Res 3:781-801

Natarajan BK (1995) Sparse approximate solutions to linear systems SIAM J Comput 25:227-234

Ratsch G, Onoda T, Muller KR (2001) Soft margins for AdaBoost Mach Learn 42:287-320

Rifkin R, Yeo G, Poggio T (2003) Regularized least squares classification Advances in learning theory: methods, models, and applications, Suykens JAK:Horvath G:Basu S:Micchelli CA:Vandewalle J, ed. pp.131

Scholkopf B, Smola AJ (2001) Learning with kernels: Support vector machines, regularization, optimization, and beyond

Smola AJ, Scholkopf B (2000) Sparse greedymatrix approximation for machine learning Proc 17th Intl Conf Mach Learn :911-918

Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers Neural Processing Letters 9:293-300

Van Gestel T, Suykens JA, Lanckriet G, Lambrechts A, De Moor B, Vandewalle J (2002) Bayesian framework for least-squares support vector machine classifiers, gaussian processes, and kernel Fisher discriminant analysis. Neural Comput 14:1115-47 [Journal] [PubMed]

(16 refs)