Citation Relationships



Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: single spike firing. J Neurosci 4:2866-76 [PubMed]

References and models cited by this paper

References and models that cite this paper

Canavier CC, Landry RS (2006) An increase in AMPA and a decrease in SK conductance increase burst firing by different mechanisms in a model of a dopamine neuron in vivo. J Neurophysiol 96:2549-63 [Journal] [PubMed]

   Differential modulation of pattern and rate in a dopamine neuron model (Canavier and Landry 2006) [Model]

Canavier CC, Oprisan SA, Callaway JC, Ji H, Shepard PD (2007) Computational model predicts a role for ERG current in repolarizing plateau potentials in dopamine neurons: implications for modulation of neuronal activity. J Neurophysiol 98:3006-22 [Journal] [PubMed]

   ERG current in repolarizing plateau potentials in dopamine neurons (Canavier et al 2007) [Model]

Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, Meredith GE, Surmeier DJ (2007) 'Rejuvenation' protects neurons in mouse models of Parkinson's disease. Nature 447:1081-6 [Journal] [PubMed]

   Rejuvenation model of dopamine neuron (Chan et al. 2007) [Model]

Cutsuridis V, Perantonis S (2006) A neural network model of Parkinson's disease bradykinesia. Neural Netw 19:354-74 [Journal] [PubMed]

   A neural model of Parkinson`s disease (Cutsuridis and Perantonis 2006, Cutsuridis 2006, 2007) [Model]

Dougalis AG, Matthews GAC, Liss B, Ungless MA (2017) Ionic currents influencing spontaneous firing and pacemaker frequency in dopamine neurons of the ventrolateral periaqueductal gray and dorsal raphe nucleus (vlPAG/DRN): A voltage-clamp and computational modelling study. J Comput Neurosci 42:275-305 [Journal] [PubMed]

   Dopamine neuron of the vent. periaqu. gray and dors. raphe nucleus (vlPAG/DRN) (Dougalis et al 2017) [Model]

Komendantov AO, Komendantova OG, Johnson SW, Canavier CC (2004) A modeling study suggests complementary roles for GABAA and NMDA receptors and the SK channel in regulating the firing pattern in midbrain dopamine neurons. J Neurophysiol 91:346-57 [Journal] [PubMed]

   Regulation of the firing pattern in dopamine neurons (Komendantov et al 2004) [Model]

Kuznetsova AY, Huertas MA, Kuznetsov AS, Paladini CA, Canavier CC (2010) Regulation of firing frequency in a computational model of a midbrain dopaminergic neuron. J Comput Neurosci 28:389-403 [Journal] [PubMed]

   Regulation of firing frequency in a midbrain dopaminergic neuron model (Kuznetsova et al. 2010) [Model]

Li YX, Bertram R, Rinzel J (1996) Modeling N-methyl-D-aspartate-induced bursting in dopamine neurons. Neuroscience 71:397-410 [PubMed]

   Bursting in dopamine neurons (Li YX et al 1996) [Model]

López-Jury L, Meza RC, Brown MTC, Henny P, Canavier CC (2018) Morphological and Biophysical Determinants of the Intracellular and Extracellular Waveforms in Nigral Dopaminergic Neurons: A Computational Study. J Neurosci 38:8295-8310 [Journal] [PubMed]

   Determinants of the intracellular and extracellular waveforms in DA neurons (Lopez-Jury et al 2018) [Model]

Migliore M, Cannia C, Canavier CC (2008) A modeling study suggesting a possible pharmacological target to mitigate the effects of ethanol on reward-related dopaminergic signaling. J Neurophysiol 99:2703-7 [Journal] [PubMed]

   Nigral dopaminergic neurons: effects of ethanol on Ih (Migliore et al. 2008) [Model]

Morozova EO, Myroshnychenko M, Zakharov D, di Volo M, Gutkin B, Lapish CC, Kuznetsov A (2016) Contribution of synchronized GABAergic neurons to dopaminergic neuron firing and bursting. J Neurophysiol 116:1900-1923 [Journal] [PubMed]

   Excitability of DA neurons and their regulation by synaptic input (Morozova et al. 2016a, 2016b) [Model]

Muddapu VR, Mandali A, Chakravarthy VS, Ramaswamy S (2019) A Computational Model of Loss of Dopaminergic Cells in Parkinson's Disease Due to Glutamate-Induced Excitotoxicity. Front Neural Circuits 13:11 [Journal] [PubMed]

   Excitotoxic loss of dopaminergic cells in PD (Muddapu et al 2019) [Model]

Phillips AJ, Robinson PA (2007) A quantitative model of sleep-wake dynamics based on the physiology of the brainstem ascending arousal system. J Biol Rhythms 22:167-79 [Journal] [PubMed]

   Quantitative model of sleep-wake dynamics (Phillips & Robinson 2007) [Model]

Reneaux M, Gupta R (2018) Prefronto-cortical dopamine D1 receptor sensitivity can critically influence working memory maintenance during delayed response tasks PLOS ONE 13(5):e0198136 [Journal]

   Effect of cortical D1 receptor sensitivity on working memory maintenance (Reneaux & Gupta 2018) [Model]

Yu N, Canavier CC (2015) A Mathematical Model of a Midbrain Dopamine Neuron Identifies Two Slow Variables Likely Responsible for Bursts Evoked by SK Channel Antagonists and Terminated by Depolarization Block. J Math Neurosci 5:5 [Journal] [PubMed]

   Phase plane reveals two slow variables in midbrain dopamine neuron bursts (Yu and Canavier, 2015) [Model]

(15 refs)