Citation Relationships



Wang YJ, Sung RJ, Lin MW, Wu SN (2006) Contribution of BK(Ca)-channel activity in human cardiac fibroblasts to electrical coupling of cardiomyocytes-fibroblasts. J Membr Biol 213:175-85 [PubMed]

   Ventricular cell model (Luo Rudy dynamic model) (Luo Rudy 1994) used in (Wang et al 2006) (XPP)

   Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++)

References and models cited by this paper

References and models that cite this paper

Amberg GC, Bonev AD, Rossow CF, Nelson MT, Santana LF (2003) Modulation of the molecular composition of large conductance, Ca(2+) activated K(+) channels in vascular smooth muscle during hypertension. J Clin Invest 112:717-24 [Journal] [PubMed]

Butler A, Tsunoda S, McCobb DP, Wei A, Salkoff L (1993) mSlo, a complex mouse gene encoding "maxi" calcium-activated potassium channels. Science 261:221-4 [PubMed]

Camelliti P, Borg TK, Kohl P (2005) Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res 65:40-51 [Journal] [PubMed]

Camelliti P, Green CR, LeGrice I, Kohl P (2004) Fibroblast network in rabbit sinoatrial node: structural and functional identification of homogeneous and heterogeneous cell coupling. Circ Res 94:828-35 [Journal] [PubMed]

Chilton L, Ohya S, Freed D, George E, Drobic V, Shibukawa Y, Maccannell KA, Imaizumi Y, Clark RB, Dixon IM, Giles WR (2005) K+ currents regulate the resting membrane potential, proliferation, and contractile responses in ventricular fibroblasts and myofibroblasts. Am J Physiol Heart Circ Physiol 288:H2931-9 [Journal] [PubMed]

Clancy CE, Rudy Y (2001) Cellular consequences of HERG mutations in the long QT syndrome: precursors to sudden cardiac death. Cardiovasc Res 50:301-13 [PubMed]

   Consequences of HERG mutations in the long QT syndrome (Clancy, Rudy 2001) [Model]

El Chemaly A, Guinamard R, Demion M, Fares N, Jebara V, Faivre JF, Bois P (2006) A voltage-activated proton current in human cardiac fibroblasts. Biochem Biophys Res Commun 340:512-6 [Journal] [PubMed]

Ermentrout GB (2002) Simulating, Analyzing, and Animating Dynamical System: A Guide to XPPAUT for Researchers and Students Society for Industrial and Applied Mathematics (SIAM)

Gaudesius G, Miragoli M, Thomas SP, Rohr S (2003) Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circ Res 93:421-8 [Journal] [PubMed]

Guinamard R, Chatelier A, Demion M, Potreau D, Patri S, Rahmati M, Bois P (2004) Functional characterization of a Ca(2+)-activated non-selective cation channel in human atrial cardiomyocytes. J Physiol 558:75-83 [Journal] [PubMed]

Horrigan FT, Cui J, Aldrich RW (1999) Allosteric voltage gating of potassium channels I. Mslo ionic currents in the absence of Ca(2+). J Gen Physiol 114:277-304 [PubMed]

   Allosteric gating of K channels (Horrigan et al 1999) [Model]

Kamkin A, Kiseleva I, Lozinsky I, Scholz H (2005) Electrical interaction of mechanosensitive fibroblasts and myocytes in the heart. Basic Res Cardiol 100:337-45 [Journal] [PubMed]

Keener JP, Keizer JE (2002) Fast and slow time scales (Chapter 4) Computational Cell Biology, Fall CP:Marland ES:Wagner JM:Tyson JJ, ed. pp.77

Kizana E, Ginn SL, Allen DG, Ross DL, Alexander IE (2005) Fibroblasts can be genetically modified to produce excitable cells capable of electrical coupling. Circulation 111:394-8 [Journal] [PubMed]

Kohl P, Camelliti P, Burton FL, Smith GL (2005) Electrical coupling of fibroblasts and myocytes: relevance for cardiac propagation. J Electrocardiol 38:45-50 [Journal] [PubMed]

Kohl P, Hunter P, Noble D (1999) Stretch-induced changes in heart rate and rhythm: clinical observations, experiments and mathematical models. Prog Biophys Mol Biol 71:91-138 [PubMed]

Lin MW, Yang SR, Huang MH, Wu SN (2004) Stimulatory actions of caffeic acid phenethyl ester, a known inhibitor of NF-kappaB activation, on Ca2+-activated K+ current in pituitary GH3 cells. J Biol Chem 279:26885-92 [Journal] [PubMed]

Lippiat JD, Standen NB, Davies NW (2000) A residue in the intracellular vestibule of the pore is critical for gating and permeation in Ca2+-activated K+ (BKCa) channels. J Physiol 529 Pt 1:131-8 [PubMed]

Lo YC, Yang SR, Huang MH, Liu YC, Wu SN (2005) Characterization of chromanol 293B-induced block of the delayed-rectifier K+ current in heart-derived H9c2 cells. Life Sci 76:2275-86 [Journal] [PubMed]

Lo YK, Wu SN, Lee CT, Li HF, Chiang HT (2001) Characterization of action potential waveform-evoked L-type calcium currents in pituitary GH3 cells. Pflugers Arch 442:547-57 [PubMed]

Luo CH, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res 74:1071-96 [PubMed]

   Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++) [Model]

Moczydlowski E, Latorre R (1983) Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers. Evidence for two voltage-dependent Ca2+ binding reactions. J Gen Physiol 82:511-42 [Journal] [PubMed]

   Ca-dependent K Channel: kinetics from rat muscle (Moczydlowski, Latorre 1983) NEURON [Model]
   Ca-dependent K Channel: kinetics from rat muscle (Moczydlowski, Latorre 1983) XPP [Model]

Peng J, Gurantz D, Tran V, Cowling RT, Greenberg BH (2002) Tumor necrosis factor-alpha-induced AT1 receptor upregulation enhances angiotensin II-mediated cardiac fibroblast responses that favor fibrosis. Circ Res 91:1119-26 [PubMed]

Peracchia C (2004) Chemical gating of gap junction channels; roles of calcium, pH and calmodulin. Biochim Biophys Acta 1662:61-80 [Journal] [PubMed]

Rohr S (2004) Role of gap junctions in the propagation of the cardiac action potential. Cardiovasc Res 62:309-22 [Journal] [PubMed]

Rothberg BS, Magleby KL (1999) Gating kinetics of single large-conductance Ca2+-activated K+ channels in high Ca2+ suggest a two-tiered allosteric gating mechanism. J Gen Physiol 114:93-124 [PubMed]

Salameh A, Frenzel C, Boldt A, Rassler B, Glawe I, Schulte J, Mühlberg K, Zimmer HG, Pfeiffer D, Dhein S (2006) Subchronic alpha- and beta-adrenergic regulation of cardiac gap junction protein expression. FASEB J 20:365-7 [Journal] [PubMed]

Sato T, Saito T, Saegusa N, Nakaya H (2005) Mitochondrial Ca2+-activated K+ channels in cardiac myocytes: a mechanism of the cardioprotective effect and modulation by protein kinase A. Circulation 111:198-203 [Journal] [PubMed]

Silva J, Rudy Y (2005) Subunit interaction determines IKs participation in cardiac repolarization and repolarization reserve. Circulation 112:1384-91 [Journal] [PubMed]

   Role of KCNQ1 and IKs in cardiac repolarization (Silva, Rudy 2005) [Model]
   Role of KCNQ1 and IKs in cardiac repolarization (Silva, Rudy 2005) (XPP) [Model]

Tanaka Y, Meera P, Song M, Knaus HG, Toro L (1997) Molecular constituents of maxi KCa channels in human coronary smooth muscle: predominant alpha + beta subunit complexes. J Physiol 502 ( Pt 3):545-57

ten Tusscher KH, Noble D, Noble PJ, Panfilov AV (2004) A model for human ventricular tissue. Am J Physiol Heart Circ Physiol 286:H1573-89 [Journal] [PubMed]

Wang W, Watanabe M, Nakamura T, Kudo Y, Ochi R (1999) Properties and expression of Ca2+-activated K+ channels in H9c2 cells derived from rat ventricle. Am J Physiol 276:H1559-66 [Journal] [PubMed]

Wang YJ, Liu YC, Chang HD, Wu SN (2006) Diosgenin, a plant-derived sapogenin, stimulates Ca2+-activated K+ current in human cortical HCN-1A neuronal cells. Planta Med 72:430-6 [Journal] [PubMed]

Wilson JR, Duncan NA, Giles WR, Clark RB (2004) A voltage-dependent K+ current contributes to membrane potential of acutely isolated canine articular chondrocytes. J Physiol 557:93-104 [Journal] [PubMed]

Wu SN (2003) Large-conductance Ca2+- activated K+ channels:physiological role and pharmacology. Curr Med Chem 10:649-61 [PubMed]

Wu SN, Chiang HT, Chang FR, Liaw CC, Wu YC (2003) Stimulatory effects of squamocin, an Annonaceous acetogenin, on Ca(2+)-activated K+ current in cultured smooth muscle cells of human coronary artery. Chem Res Toxicol 16:15-22 [Journal] [PubMed]

Wu SN, Lin PH, Hsieh KS, Liu YC, Chiang HT (2003) Behavior of nonselective cation channels and large-conductance Ca2+-activated K+ channels induced by dynamic changes in membrane stretch in cultured smooth muscle cells of human coronary artery. J Cardiovasc Electrophysiol 14:44-51 [PubMed]

Wu SN, Liu SI, Hwang TL (1998) Activation of muscarinic K+ channels by extracellular ATP and UTP in rat atrial myocytes. J Cardiovasc Pharmacol 31:203-11 [PubMed]

Xu Y, Tuteja D, Zhang Z, Xu D, Zhang Y, Rodriguez J, Nie L, Tuxson HR, Young JN, Glatter KA, Vázquez AE, Yamoah EN, Chiamvimonvat N (2003) Molecular identification and functional roles of a Ca(2+)-activated K+ channel in human and mouse hearts. J Biol Chem 278:49085-94 [Journal] [PubMed]

Wang YJ, Chen BS, Lin MW, Lin AA, Peng H, Sung RJ, Wu SN (2008) Time-dependent block of ultrarapid-delayed rectifier K+ currents by aconitine, a potent cardiotoxin, in heart-derived H9c2 myoblasts and in neonatal rat ventricular myocytes. Toxicol Sci 106:454-63 [Journal] [PubMed]

   Action potential of adult rat ventricle (Wang et al. 2008) [Model]

(40 refs)