Citation Relationships



Weiler N, Wood L, Yu J, Solla SA, Shepherd GM (2008) Top-down laminar organization of the excitatory network in motor cortex. Nat Neurosci 11:360-6[PubMed]

   Laminar connectivity matrix simulation (Weiler et al 2008)

References and models cited by this paper

References and models that cite this paper

Aegerter-Wilmsen T, Bisseling T (2005) Biology by numbers--introducing quantitation into life science education. PLoS Biol 3:e1-73 [PubMed]

Alloway KD (2008) Information processing streams in rodent barrel cortex: the differential functions of barrel and septal circuits. Cereb Cortex 18:979-89

Armstrong-James M, Fox K, Das-Gupta A (1992) Flow of excitation within rat barrel cortex on striking a single vibrissa. J Neurophysiol 68:1345-58 [Journal] [PubMed]

Binzegger T, Douglas RJ, Martin KA (2004) A quantitative map of the circuit of cat primary visual cortex. J Neurosci 24:8441-53 [PubMed]

bke J, Roth A, Feldmeyer D, Sakmann B (2003) Morphometric analysis of the columnar innervation domain of neurons connecting layer 4 and layer 2-3 of juvenile rat barrel cortex. Cereb Cortex 13:1051-63 [PubMed]

Braitenberg V, Schuz A (1998) Cortex Statistics and Geometry of Neuronal Connectivity 2nd ed

Brecht M, Krauss A, Muhammad S, Sinai-Esfahani L, Bellanca S, Margrie TW (2004) Organization of rat vibrissa motor cortex and adjacent areas according to cytoarchitectonics, microstimulation, and intracellular stimulation of identified cells. J Comp Neurol 479:360-73 [PubMed]

Briggs F, Callaway EM (2005) Laminar patterns of local excitatory input to layer 5 neurons in macaque primary visual cortex. Cereb Cortex 15:479-88 [PubMed]

Bureau I, von Saint Paul F, Svoboda K (2006) Interdigitated paralemniscal and lemniscal pathways in the mouse barrel cortex. PLoS Biol 4:e382-9 [PubMed]

Callaway EM (1998) Local circuits in primary visual cortex of the macaque monkey. Annu Rev Neurosci 21:47-74 [PubMed]

Callaway EM (2005) Feedforward, feedback and inhibitory connections in primate visual cortex. Neural Netw 17:625-32 [PubMed]

Castro-Alamancos MA (2000) Origin of synchronized oscillations induced by neocortical disinhibition in vivo. J Neurosci 20:9195-206 [PubMed]

Caviness VS (1975) Architectonic map of neocortex of the normal mouse. J Comp Neurol 164:247-63 [PubMed]

Chagnac-Amitai Y, Connors BW (1989) Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex. J Neurophysiol 62:1149-62 [Journal] [PubMed]

Connors BW (2007) Initiation of synchronized neuronal bursting in neocortex. Nature 310:685-7 [PubMed]

Crick F, Koch C (1998) Constraints on cortical and thalamic projections: the no-strong-loops hypothesis. Nature 391:245-50 [PubMed]

Dantzker JL, Callaway EM (2000) Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons. Nat Neurosci 3:701-7 [PubMed]

Douglas RJ, Martin KA (2004) Neuronal circuits of the neocortex. Annu Rev Neurosci 27:419-51 [PubMed]

Fregnac Y, Et_al (2006) The interface between neurons and global brain function. Microcircuits, Grillner S:Graybiel AM, ed. pp.393

Helmstaedter M, de Kock CP, Feldmeyer D, Bruno RM, Sakmann B (2007) Reconstruction of an average cortical column in silico. Brain Res Rev 55:193-203 [PubMed]

Hirsch JA (1995) Synaptic integration in layer IV of the ferret striate cortex. J Physiol 483 ( Pt 1):183-99 [PubMed]

Huber D, Petreanu L, Ghitani N, Ranade S, Hromadka T, Mainen Z, Svoboda K (2008) Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 451:61-4

Jones EG (1975) Lamination and differential distribution of thalamic afferents within the sensory-motor cortex of the squirrel monkey. J Comp Neurol 160:167-203 [PubMed]

Kaneko T, Caria MA, Asanuma H (1994) Information processing within the motor cortex. II. Intracortical connections between neurons receiving somatosensory cortical input and motor output neurons of the cortex. J Comp Neurol 345:172-84 [PubMed]

Kaneko T, Cho R, Li Y, Nomura S, Mizuno N (2000) Predominant information transfer from layer III pyramidal neurons to corticospinal neurons. J Comp Neurol 423:52-65 [PubMed]

Kaneko T, Kang Y, Mizuno N (1995) Glutaminase-positive and glutaminase-negative pyramidal cells in layer VI of the primary motor and somatosensory cortices: a combined analysis by intracellular staining and immunocytochemistry in the rat. J Neurosci 15:8362-77 [PubMed]

Keller A (2007) Intrinsic synaptic organization of the motor cortex. Cereb Cortex 3:430-41 [PubMed]

Lehky SR, Sejnowski TJ (1988) Network model of shape-from-shading: neural function arises from both receptive and projective fields. Nature 333:452-4 [PubMed]

Llinas R (2002) of the Vortex: From Neurons to Self

Lubke J, Feldmeyer D (2007) Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex. Brain Struct Funct 212:3-17 [PubMed]

Nelson S (2002) Cortical microcircuits: diverse or canonical? Neuron 36:19-27 [PubMed]

Ohki K, Reid RC (2007) Specificity and randomness in the visual cortex. Curr Opin Neurobiol 17:401-7 [PubMed]

Petersen CC (2007) The functional organization of the barrel cortex. Neuron 56:339-55 [PubMed]

Petreanu L, Huber D, Sobczyk A, Svoboda K (2007) Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat Neurosci 10:663-8 [PubMed]

Pouille F, Scanziani M (2004) Routing of spike series by dynamic circuits in the hippocampus. Nature 429:717-23 [PubMed]

Schieber MH (2001) Constraints on somatotopic organization in the primary motor cortex. J Neurophysiol 86:2125-43 [PubMed]

Schubert D, Kötter R, Staiger JF (2007) Mapping functional connectivity in barrel-related columns reveals layer- and cell type-specific microcircuits. Brain Struct Funct 212:107-19 [PubMed]

Schubert D, Kotter R, Zilles K, Luhmann HJ, Staiger JF (2003) Cell type-specific circuits of cortical layer IV spiny neurons. J Neurosci 23:2961-70 [PubMed]

Schubert D, Staiger JF, Cho N, Kotter R, Zilles K, Luhmann HJ (2001) Layer-specific intracolumnar and transcolumnar functional connectivity of layer V pyramidal cells in rat barrel cortex. J Neurosci 21:3580-92 [PubMed]

Shepherd GM, Stepanyants A, Bureau I, Chklovskii D, Svoboda K (2005) Geometric and functional organization of cortical circuits. Nat Neurosci 8:782-90 [PubMed]

Shepherd GM, Svoboda K (2005) Laminar and columnar organization of ascending excitatory projections to layer 2-3 pyramidal neurons in rat barrel cortex. J Neurosci 25:5670-9 [PubMed]

Shipp S (2005) The importance of being agranular: a comparative account of visual and motor cortex. Philos Trans R Soc Lond B Biol Sci 360:797-814

Silberberg G, Grillner S, LeBeau FE, Maex R, Markram H (2005) Synaptic pathways in neural microcircuits. Trends Neurosci 28:541-51 [PubMed]

Stepanyants A, Chklovskii DB (2005) Neurogeometry and potential synaptic connectivity. Trends Neurosci 28:387-94 [PubMed]

Stepanyants A, Hirsch JA, Martinez LM, Kisvarday ZF, Ferecskó AS, Chklovskii DB (2008) Local potential connectivity in cat primary visual cortex. Cereb Cortex 18:13-28 [PubMed]

Strick PL, Sterling P (1974) Synaptic termination of afferents from the ventrolateral nucleus of the thalamus in the cat motor cortex. A light and electron microscopy study. J Comp Neurol 153:77-106 [PubMed]

Tarczy-Hornoch K, Martin KA, Stratford KJ, Jack JJ (1999) Intracortical excitation of spiny neurons in layer 4 of cat striate cortex in vitro. Cereb Cortex 9:833-43 [PubMed]

Thomson AM, Lamy C (2007) Functional maps of neocortical local circuitry. Front Neurosci 1:19-42 [PubMed]

Wise SP, Donoghue JP (1986) Motor cortex of rodents Cerebral Cortex: Sensory-Motor Areas and Aspects of Cortical Connectivity, Jones EG:Peters A, ed. pp.243

Zhang ZW, Deschenes M (1997) Intracortical axonal projections of lamina VI cells of the primary somatosensory cortex in the rat: a single-cell labeling study. J Neurosci 17:6365-79 [PubMed]

Chadderdon GL, Mohan A, Suter BA, Neymotin SA, Kerr CC, Francis JT, Shepherd GM, Lytton WW (2014) Motor cortex microcircuit simulation based on brain activity mapping. Neural Comput 26:1239-62 [Journal] [PubMed]

   Motor cortex microcircuit simulation based on brain activity mapping (Chadderdon et al. 2014) [Model]

Dura-Bernal S, Neymotin SA, Kerr CC, Sivagnanam S, Majumdar A, Francis JT, Lytton WW (2017) Evolutionary algorithm optimization of biological learning parameters in a biomimetic neuroprosthesis. IBM Journal of Research and Development (Computational Neuroscience special issue) 61(2/3):6:1-6:14 [Journal]

   Motor system model with reinforcement learning drives virtual arm (Dura-Bernal et al 2017) [Model]

Eguchi A, Neymotin SA and Stringer SM (2014) Color opponent receptive fields self-organize in a biophysical model of visual cortex via spike-timing dependent plasticity 8:16. doi: Front. Neural Circuits 8:16 [Journal]

   Simulated cortical color opponent receptive fields self-organize via STDP (Eguchi et al., 2014) [Model]

Hass J, Hertag L, Durstewitz D (2016) A detailed data-driven network model of prefrontal cortex reproduces key features of in vivo activity PLoS Comput Biol 12(5):e1004930 [Journal] [PubMed]

   A detailed data-driven network model of prefrontal cortex (Hass et al 2016) [Model]

Hooks BM, Hires SA, Zhang YX, Huber D, Petreanu L, Svoboda K, Shepherd GM (2011) Laminar analysis of excitatory local circuits in vibrissal motor and sensory cortical areas. PLoS Biol 9:e1000572 [Journal] [PubMed]

   Laminar analysis of excitatory circuits in vibrissal motor and sensory cortex (Hooks et al. 2011) [Model]

Neymotin SA, Dura-Bernal S, Lakatos P, Sanger TD, Lytton WW (2016) Multitarget Multiscale Simulation for Pharmacological Treatment of Dystonia in Motor Cortex. Front Pharmacol 7:157 [Journal] [PubMed]

   Multitarget pharmacology for Dystonia in M1 (Neymotin et al 2016) [Model]

Neymotin SA, McDougal RA, Bulanova AS, Zeki M, Lakatos P, Terman D, Hines ML, Lytton WW (2016) Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex Neuroscience 316:344-366 [Journal] [PubMed]

   Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016) [Model]

Rowan MS, Neymotin SA, Lytton WW (2014) Electrostimulation to reduce synaptic scaling driven progression of Alzheimer's disease. Front Comput Neurosci 8:39 [Journal] [PubMed]

   Electrostimulation to reduce synaptic scaling driven progression of Alzheimers (Rowan et al. 2014) [Model]

(58 refs)