Citation Relationships



Lundstrom BN, Famulare M, Sorensen LB, Spain WJ, Fairhall AL (2009) Sensitivity of firing rate to input fluctuations depends on time scale separation between fast and slow variables in single neurons J Comput Neurosci

   Hodgkin-Huxley simplifed 2D and 3D models (Lundstrom et al. 2009)

References and models cited by this paper

References and models that cite this paper

Arfken G, Weber H (1995) Mathematical Methods For Physicists

Arsiero M, Lüscher HR, Lundstrom BN, Giugliano M (2007) The impact of input fluctuations on the frequency-current relationships of layer 5 pyramidal neurons in the rat medial prefrontal cortex. J Neurosci 27:3274-84 [Journal] [PubMed]

   Input Fluctuations effects on f-I curves (Arsiero et al. 2007) [Model]

Benda J, Longtin A, Maler L (2005) Spike-frequency adaptation separates transient communication signals from background oscillations. J Neurosci 25:2312-21 [Journal] [PubMed]

Chance FS, Abbott LF, Reyes AD (2002) Gain modulation from background synaptic input. Neuron 35:773-82 [PubMed]

Connor JA, Stevens CF (1971) Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. J Physiol 213:31-53 [PubMed]

Dayan P, Abbott LF (2001) Theoretical Neuroscience. Computational and Mathematical Modeling of Neural Systems

Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ (2001) Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107:13-24 [PubMed]

   Fluctuating synaptic conductances recreate in-vivo-like activity (Destexhe et al 2001) [Model]
   Thalamocortical Relay cell under current clamp in high-conductance state (Zeldenrust et al 2018) [Model]

Destexhe A, Rudolph M, Paré D (2003) The high-conductance state of neocortical neurons in vivo. Nat Rev Neurosci 4:739-51 [Journal] [PubMed]

DeVille RE, Vanden-Eijnden E, Muratov CB (2005) Two distinct mechanisms of coherence in randomly perturbed dynamical systems. Phys Rev E Stat Nonlin Soft Matter Phys 72:031105 [Journal] [PubMed]

Ermentrout B (1998) Linearization of F-I curves by adaptation. Neural Comput 10:1721-9 [PubMed]

Fairhall AL, Lewen GD, Bialek W, de Ruyter Van Steveninck RR (2001) Efficiency and ambiguity in an adaptive neural code. Nature 412:787-92 [Journal] [PubMed]

Fellous JM, Rudolph M, Destexhe A, Sejnowski TJ (2003) Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity. Neuroscience 122:811-29 [PubMed]

Fleidervish IA, Friedman A, Gutnick MJ (1996) Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices. J Physiol 493 ( Pt 1):83-97 [PubMed]

Gerstner W, Kistler WM (2002) Spiking neuron models

Gutkin BS, Ermentrout GB (1998) Dynamics of membrane excitability determine interspike interval variability: a link between spike generation mechanisms and cortical spike train statistics. Neural Comput 10:1047-65 [PubMed]

Higgs MH, Slee SJ, Spain WJ (2006) Diversity of gain modulation by noise in neocortical neurons: regulation by the slow afterhyperpolarization conductance. J Neurosci 26:8787-99 [Journal] [PubMed]

Hodgkin AL (1948) The local electric changes associated with repetitive action in a non-medullated axon. J Physiol 107:165-81 [PubMed]

HODGKIN AL, HUXLEY AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500-44 [Journal] [PubMed]

   Squid axon (Hodgkin, Huxley 1952) (LabAXON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (NEURON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SNNAP) [Model]
   Squid axon (Hodgkin, Huxley 1952) used in (Chen et al 2010) (R language) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SBML, XPP, other) [Model]

Hong S, Agüera y Arcas B, Fairhall AL (2007) Single neuron computation: from dynamical system to feature detector. Neural Comput 19:3133-72 [Journal] [PubMed]

Hong S, Lundstrom BN, Fairhall AL (2008) Intrinsic gain modulation and adaptive neural coding. PLoS Comput Biol 4:e1000119 [Journal] [PubMed]

Izhikevich EM (2007) Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting [Journal]

   Artificial neuron model (Izhikevich 2003, 2004, 2007) [Model]

Koch C (1990) Biophysics of computation: toward the mechanisms underlyinginformation processing in single neurons Computational Neuroscience, Schwartz EL, ed. pp.97

König P, Engel AK, Singer W (1996) Integrator or coincidence detector? The role of the cortical neuron revisited. Trends Neurosci 19:130-7 [PubMed]

Lundstrom BN, Fairhall AL (2006) Decoding stimulus variance from a distributional neural code of interspike intervals. J Neurosci 26:9030-7 [Journal] [PubMed]

Lundstrom BN, Hong S, Higgs MH, Fairhall AL (2008) Two computational regimes of a single-compartment neuron separated by a planar boundary in conductance space. Neural Comput 20:1239-60 [Journal] [PubMed]

Moreno R, de la Rocha J, Renart A, Parga N (2002) Response of spiking neurons to correlated inputs. Phys Rev Lett 89:288101 [Journal] [PubMed]

Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35:193-213 [Journal] [PubMed]

   Morris-Lecar model of the barnacle giant muscle fiber (Morris, Lecar 1981) [Model]

Prescott SA, Ratté S, De Koninck Y, Sejnowski TJ (2006) Nonlinear interaction between shunting and adaptation controls a switch between integration and coincidence detection in pyramidal neurons. J Neurosci 26:9084-97 [Journal] [PubMed]

Rauch A, La Camera G, Luscher HR, Senn W, Fusi S (2003) Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo-like input currents. J Neurophysiol 90:1598-612 [Journal] [PubMed]

Richardson MJ (2004) Effects of synaptic conductance on the voltage distribution and firing rate of spiking neurons. Phys Rev E Stat Nonlin Soft Matter Phys 69:051918 [Journal] [PubMed]

Rinzel J, Ermentrout B (1998) Analysis of neural excitability and oscillations. Methods In Neuronal Modeling 2nd Edition, Segev I, Koch C, ed. pp.251

Robinson HP, Harsch A (2002) Stages of spike time variability during neuronal responses to transient inputs. Phys Rev E Stat Nonlin Soft Matter Phys 66:061902 [Journal] [PubMed]

Rudolph M, Destexhe A (2005) An extended analytic expression for the membrane potential distribution of conductance-based synaptic noise. Neural Comput 17:2301-15 [Journal] [PubMed]

   Steady-state Vm distribution of neurons subject to synaptic noise (Rudolph, Destexhe 2005) [Model]

Rudolph M, Destexhe A (2006) On the use of analytical expressions for the voltage distribution to analyze intracellular recordings. Neural Comput 18:2917-22 [Journal] [PubMed]

Rush ME, Rinzel J (1995) The potassium A-current, low firing rates and rebound excitation in Hodgkin-Huxley models. Bull Math Biol 57:899-929 [PubMed]

Shadlen MN, Newsome WT (1994) Noise, neural codes and cortical organization. Curr Opin Neurobiol 4:569-79 [PubMed]

Slee SJ, Higgs MH, Fairhall AL, Spain WJ (2005) Two-dimensional time coding in the auditory brainstem. J Neurosci 25:9978-88 [Journal] [PubMed]

Strogatz SH (1994) Nonlinear Dynamics And Chaos With Applications To Physics, Biology, Chemistry, And Engineering

Tateno T, Pakdaman K (2004) Random dynamics of the Morris-Lecar neural model. Chaos 14:511-30 [Journal] [PubMed]

VanRullen R, Guyonneau R, Thorpe SJ (2005) Spike times make sense. Trends Neurosci 28:1-4 [Journal] [PubMed]

(40 refs)