Citation Relationships



Clay JR, DeFelice LJ (1983) Relationship between membrane excitability and single channel open-close kinetics. Biophys J 42:151-7 [PubMed]

References and models cited by this paper

References and models that cite this paper

Benke TA, Lüthi A, Palmer MJ, Wikström MA, Anderson WW, Isaac JT, Collingridge GL (2001) Mathematical modelling of non-stationary fluctuation analysis for studying channel properties of synaptic AMPA receptors. J Physiol 537:407-20 [PubMed]

Bruce IC, White MW, Irlicht LS, O'Leary SJ, Dynes S, Javel E, Clark GM (1999) A stochastic model of the electrically stimulated auditory nerve: single-pulse response. IEEE Trans Biomed Eng 46:617-29 [PubMed]

   Cochlear implant models (Bruce et al. 1999a, b, c, 2000) [Model]

Cannon RC, O'Donnell C, Nolan MF (2010) Stochastic ion channel gating in dendritic neurons: morphology dependence and probabilistic synaptic activation of dendritic spikes. PLoS Comput Biol [Journal] [PubMed]

   Stochastic ion channels and neuronal morphology (Cannon et al. 2010) [Model]

Dangerfield CE, Kay D, Burrage K (2012) Modeling ion channel dynamics through reflected stochastic differential equations Phys Rev E 85(5):051907 [Journal]

   Reflected SDE Hodgkin-Huxley Model (Dangerfield et al. 2012) [Model]

Destexhe A, Mainen ZF, Sejnowski TJ (1994) Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J Comput Neurosci 1:195-230 [PubMed]

   Application of a common kinetic formalism for synaptic models (Destexhe et al 1994) [Model]
   Kinetic synaptic models applicable to building networks (Destexhe et al 1998) [Model]

Goldwyn JH, Imennov NS, Famulare M, Shea-Brown E (2011) Stochastic differential equation models for ion channel noise in Hodgkin-Huxley neurons. Phys Rev E Stat Nonlin Soft Matter Phys 83:041908 [Journal] [PubMed]

   On stochastic diff. eq. models for ion channel noise in Hodgkin-Huxley neurons (Goldwyn et al. 2010) [Model]

Hales JP, Lin CS, Bostock H (2004) Variations in excitability of single human motor axons, related to stochastic properties of nodal sodium channels. J Physiol 559:953-64 [Journal] [PubMed]

Kilinc D, Demir A (2017) Noise in Neuronal and Electronic Circuits: A General Modeling Framework and Non-Monte Carlo Simulation Techniques. IEEE Trans Biomed Circuits Syst 11:958-974 [Journal] [PubMed]

   A neuronal circuit simulator for non Monte Carlo analysis of neuronal noise (Kilinc & Demir 2018) [Model]

Kilinc D,Demir A (2015) Simulation of noise in neurons and neuronal circuits Proceedings of the IEEE/ACM international conference on computer-aided design (ICCAD) :589-596 [Journal]

   A neuronal circuit simulator for non Monte Carlo analysis of neuronal noise (Kilinc & Demir 2018) [Model]

Linaro D, Storace M, Giugliano M (2011) Accurate and fast simulation of channel noise in conductance-based model neurons by diffusion approximation. PLoS Comput Biol 7:e1001102 [Journal] [PubMed]

   Accurate and fast simulation of channel noise in conductance-based model neurons (Linaro et al 2011) [Model]

Mino H, Rubinstein JT, White JA (2002) Comparison of algorithms for the simulation of action potentials with stochastic sodium channels. Ann Biomed Eng 30:578-87 [PubMed]

Nguyen V, Mathias R, Smith GD (2005) A stochastic automata network descriptor for Markov chain models of instantaneously coupled intracellular Ca2+ channels. Bull Math Biol 67:393-432 [Journal] [PubMed]

   Stochastic automata network Markov model descriptors of coupled Ca2+ channels (Nguyen et al. 2005) [Model]

Savtchenko LP, Gogan P, Tyc-Dumont S (2001) Dendritic spatial flicker of local membrane potential due to channel noise and probabilistic firing of hippocampal neurons in culture. Neurosci Res 41:161-83 [PubMed]

Steinmetz PN, Manwani A, Koch C, London M, Segev I (2000) Subthreshold voltage noise due to channel fluctuations in active neuronal membranes. J Comput Neurosci 9:133-48 [PubMed]

(14 refs)