Citation Relationships



Holmes WR, Levy WB (1990) Insights into associative long-term potentiation from computational models of NMDA receptor-mediated calcium influx and intracellular calcium concentration changes. J Neurophysiol 63:1148-68 [PubMed]

References and models cited by this paper

References and models that cite this paper

Benke TA, Lüthi A, Palmer MJ, Wikström MA, Anderson WW, Isaac JT, Collingridge GL (2001) Mathematical modelling of non-stationary fluctuation analysis for studying channel properties of synaptic AMPA receptors. J Physiol 537:407-20 [PubMed]

Bhalla US (2002) Biochemical signaling networks decode temporal patterns of synaptic input. J Comput Neurosci 13:49-62 [PubMed]

Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283:381-7 [PubMed]

   Emergent properties of networks of biological signaling pathways (Bhalla, Iyengar 1999) [Model]

Chitwood RA, Hubbard A, Jaffe DB (1999) Passive electrotonic properties of rat hippocampal CA3 interneurones. J Physiol 515 ( Pt 3):743-56 [PubMed]

Cook EP, Johnston D (1999) Voltage-dependent properties of dendrites that eliminate location-dependent variability of synaptic input. J Neurophysiol 81:535-43 [Journal] [PubMed]

De Schutter E, Smolen P (1998) Calcium dynamics in large neuronal models Methods In Neuronal Modeling: From Ions To Networks, Koch C:Segev I, ed. pp.211

Destexhe A, Mainen ZF, Sejnowski TJ (1994) Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J Comput Neurosci 1:195-230 [PubMed]

   Application of a common kinetic formalism for synaptic models (Destexhe et al 1994) [Model]
   Kinetic synaptic models applicable to building networks (Destexhe et al 1998) [Model]

Franks KM, Bartol TM, Sejnowski TJ (2001) An MCell model of calcium dynamics and frequency-dependence of calmodulin activation in dendritic spines Neurocomputing 38:9-16

Gradwohl G, Grossman Y (2001) Dendritic voltage dependent conductances increase the excitatory synaptic response and its postsynaptic inhibition in a reconstructed alpha-motoneuron: A computer model Neurocomputing 38:223-229

Gradwohl G, Nitzan R, Grossman Y (1999) Homogeneous distribution of excitatory and inhibitory synapses on the dendrites of the cat surea triceps alpha-motoneurons increases synaptic efficacy: computer model Neurocomputing 267:155-162

Holmes WR (2000) Models of calmodulin trapping and CaM kinase II activation in a dendritic spine. J Comput Neurosci 8:65-85 [PubMed]

Jaffe DB, Carnevale NT (1999) Passive normalization of synaptic integration influenced by dendritic architecture. J Neurophysiol 82:3268-85 [Journal] [PubMed]

Jaffe DB, Fisher SA, Brown TH (1994) Confocal laser scanning microscopy reveals voltage-gated calcium signals within hippocampal dendritic spines. J Neurobiol 25:220-33 [Journal] [PubMed]

Jaffe DB, Ross WN, Lisman JE, Lasser-Ross N, Miyakawa H, Johnston D (1994) A model for dendritic Ca2+ accumulation in hippocampal pyramidal neurons based on fluorescence imaging measurements. J Neurophysiol 71:1065-77 [Journal] [PubMed]

Kapur A, Lytton WW, Ketchum KL, Haberly LB (1997) Regulation of the NMDA component of EPSPs by different components of postsynaptic GABAergic inhibition: computer simulation analysis in piriform cortex. J Neurophysiol 78:2546-59 [Journal] [PubMed]

Li YX, Bertram R, Rinzel J (1996) Modeling N-methyl-D-aspartate-induced bursting in dopamine neurons. Neuroscience 71:397-410 [PubMed]

   Bursting in dopamine neurons (Li YX et al 1996) [Model]

Manninen T, Hituri K, Kotaleski JH, Blackwell KT, Linne ML (2010) Postsynaptic signal transduction models for long-term potentiation and depression. Front Comput Neurosci 4:152 [Journal] [PubMed]

Moore LE, Buchanan JT (1993) The effects of neurotransmitters on the integrative properties of spinal neurons in the lamprey. J Exp Biol 175:89-114 [PubMed]

Phillips AJ, Robinson PA (2007) A quantitative model of sleep-wake dynamics based on the physiology of the brainstem ascending arousal system. J Biol Rhythms 22:167-79 [Journal] [PubMed]

   Quantitative model of sleep-wake dynamics (Phillips & Robinson 2007) [Model]

Tsai KY, Carnevale NT, Brown TH (1994) Hebbian learning is jointly controlled by electrotonic and input structure Network 5:1-19

Winslow JL, Jou SF, Wang S, Wojtowicz JM (1999) Signals in stochastically generated neurons. J Comput Neurosci 6:5-26 [PubMed]

Zador A, Koch C (1994) Linearized models of calcium dynamics: formal equivalence to the cable equation. J Neurosci 14:4705-15 [PubMed]

(22 refs)