Citation Relationships



Dayan P, Abbott LF (2001) Theoretical Neuroscience. Computational and Mathematical Modeling of Neural Systems

References and models cited by this paper

References and models that cite this paper

Baker JL, Perez-Rosello T, Migliore M, Barrionuevo G, Ascoli GA (2011) A computer model of unitary responses from associational-commissural and perforant path synapses in hippocampal CA3 pyramidal cells. J Comput Neurosci 31(1):137-58 [Journal] [PubMed]

   A model of unitary responses from A/C and PP synapses in CA3 pyramidal cells (Baker et al. 2010) [Model]

Barreto E, Cressman JR (2011) Ion concentration dynamics as a mechanism for neuronal bursting Journal of Biological Physics 37:361-373 [Journal] [PubMed]

   Ion concentration dynamics as a mechanism for neuronal bursting (Barreto & Cressman 2011) [Model]

Beck JM, Pouget A (2007) Exact inferences in a neural implementation of a hidden Markov model. Neural Comput 19:1344-61 [PubMed]

Bittner KC, Milstein AD, Grienberger C, Romani S, Magee JC (2017) Behavioral time scale synaptic plasticity underlies CA1 place fields. Science 357:1033-1036 [Journal] [PubMed]

   Behavioral time scale synaptic plasticity underlies CA1 place fields (Bittner et al. 2017) [Model]

Cali C, Berger TK, Pignatelli M, Carleton A, Markram H, Giugliano M (2008) Inferring connection proximity in networks of electrically coupled cells by subthreshold frequency response analysis J Comp Neurosci 24:330-45 [Journal] [PubMed]

   Inferring connection proximity in electrically coupled networks (Cali et al. 2007) [Model]

Caplan JS, Williams AH, Marder E (2014) Many parameter sets in a multicompartment model oscillator are robust to temperature perturbations J Neurosci. 34(14):496-75 [Journal] [PubMed]

   Temperature-Dependent Pyloric Pacemaker Kernel (Caplan JS et al., 2014) [Model]

Dudman JT, Nolan MF (2009) Stochastically gating ion channels enable patterned spike firing through activity-dependent modulation of spike probability. PLoS Comput Biol 5:e1000290 [Journal] [PubMed]

Ermentrout GB, Terman DH (2010) Mathematical Foundations of Neuroscience Interdisciplinary Applied Mathematics, Antman SS:Marsden JE:Sirovich L:Wiggins, ed. pp.1 [Journal]

   Mathematical Foundations of Neuroscience (Ermentrout and Terman 2010) [Model]

Esposito U, Giugliano M, van Rossum M, Vasilaki E (2014) Measuring symmetry, asymmetry and randomness in neural network connectivity. PLoS One 9:e100805 [Journal] [PubMed]

   Statistics of symmetry measure for networks of neurons (Esposito et al. 2014) [Model]

Foldy C, Aradi I, Howard A, Soltesz I (2004) Diversity beyond variance: modulation of firing rates and network coherence by GABAergic subpopulations. Eur J Neurosci 19:119-30 [Journal] [PubMed]

Girard B, Tabareau N, Pham QC, Berthoz A, Slotine JJ (2008) Where neuroscience and dynamic system theory meet autonomous robotics: a contracting basal ganglia model for action selection. Neural Netw 21:628-41 [Journal] [PubMed]

   A contracting model of the basal ganglia (Girard et al. 2008) [Model]

Giugliano M, Gambazzi L, Ballerini L, Prato M, Campidelli S (2012) Carbon nanotubes as electrical interfaces to neurons Nanotechnology for Biology and Medicine, Parpura V, Silva GA, ed. pp.187 [Journal]

   Carbon nanotubes as electrical interfaces to neurons (Giugliano et al. 2008) [Model]

Gloveli T, Dugladze T, Rotstein HG, Traub RD, Monyer H, Heinemann U, Whittington MA, Kopell N (2005) Orthogonal arrangement of rhythm-generating microcircuits in the hippocampus. Proc Natl Acad Sci U S A 102:13295-300 [Journal] [PubMed]

   Gamma and theta rythms in biophysical models of hippocampus circuits (Kopell et al. 2011) [Model]

Goldberg DH, Andreou AG (2007) Distortion of neural signals by spike coding. Neural Comput 19:2797-839 [PubMed]

Goldwyn JH, Imennov NS, Famulare M, Shea-Brown E (2011) On stochastic differential equation models for ion channel noise in Hodgkin-Huxley neurons Phys. Rev. E 83:041908 [Journal]

   On stochastic diff. eq. models for ion channel noise in Hodgkin-Huxley neurons (Goldwyn et al. 2010) [Model]

Goldwyn JH, Shea-Brown E (2011) The what and where of adding channel noise to the Hodgkin-Huxley Equations. PLoS Computational Biology 7(11):e1002247 [Journal] [PubMed]

   Stochastic versions of the Hodgkin-Huxley equations (Goldwyn, Shea-Brown 2011) (pylab) [Model]
   Stochastic versions of the Hodgkin-Huxley equations (Goldwyn, Shea-Brown 2011) [Model]

Humphries MD, Gurney K (2007) Solution methods for a new class of simple model neurons. Neural Comput 19:3216-25 [PubMed]

Jolivet R, Lewis TJ, Gerstner W (2004) Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. J Neurophysiol 92:959-76 [Journal] [PubMed]

   Spike Response Model simulator (Jolivet et al. 2004, 2006, 2008) [Model]

Kerr CC, Van Albada SJ, Neymotin SA, Chadderdon GL, Robinson PA, Lytton WW (2013) Cortical information flow in Parkinson's disease: a composite network-field model. Front Comput Neurosci 7:39:1-14 [Journal] [PubMed]

   Composite spiking network/neural field model of Parkinsons (Kerr et al 2013) [Model]

Kumar A, Schrader S, Aertsen A, Rotter S (2008) The high-conductance state of cortical networks. Neural Comput 20:1-43 [PubMed]

Laing CR, Longtin A (2003) Dynamics of deterministic and stochastic paired excitatory-inhibitory delayed feedback. Neural Comput 15:2779-822 [PubMed]

Linaro D, Storace M, Giugliano M (2011) Accurate and fast simulation of channel noise in conductance-based model neurons by diffusion approximation PLOS 7:e1001102 [Journal] [PubMed]

   Accurate and fast simulation of channel noise in conductance-based model neurons (Linaro et al 2011) [Model]

Lundstrom BN, Famulare M, Sorensen LB, Spain WJ, Fairhall AL (2009) Sensitivity of firing rate to input fluctuations depends on time scale separation between fast and slow variables in single neurons J Comput Neurosci [Journal]

   Hodgkin-Huxley simplifed 2D and 3D models (Lundstrom et al. 2009) [Model]

Machens CK, Brody CD (2008) Design of continuous attractor networks with monotonic tuning using a symmetry principle. Neural Comput 20:452-85 [PubMed]

Masuda N, Okada M, Aihara K (2007) Filtering of spatial bias and noise inputs by spatially structured neural networks. Neural Comput 19:1854-70 [PubMed]

Monaco JD, Knierim JJ, Zhang K (2011) Sensory feedback, error correction, and remapping in a multiple oscillator model of place cell activity Frontiers in Computational Neuroscience 5(0):39 [Journal]

   Sensory feedback in an oscillatory interference model of place cell activity (Monaco et al. 2011) [Model]

Moradi K, Moradi K, Ganjkhani M, Hajihasani M, Gharibzadeh S, Kaka G (2013) A fast model of voltage-dependent NMDA receptors J Comput Neurosci 34(3):521-531 [Journal] [PubMed]

   A fast model of voltage-dependent NMDA Receptors (Moradi et al. 2013) [Model]

Muller E, Buesing L, Schemmel J, Meier K (2007) Spike-frequency adapting neural ensembles: beyond mean adaptation and renewal theories. Neural Comput 19:2958-3010 [PubMed]

Muresan RC, Savin C (2007) Resonance or integration? Self-sustained dynamics and excitability of neural microcircuits. J Neurophysiol 97:1911-30 [PubMed]

Norheim ES, Wyller J, Nordlie E, Einevoll GT (2012) A minimal mechanistic model for temporal signal processing in the lateral geniculate nucleus. Cogn Neurodyn 6:259-81 [Journal] [PubMed]

   LGNcircuit: Minimal LGN network model of temporal processing of visual input (Norheim et al. 2012) [Model]

Paninski L (2006) The spike-triggered average of the integrate-and-fire cell driven by gaussian white noise. Neural Comput 18:2592-616 [PubMed]

Paninski L, Pillow JW, Simoncelli EP (2004) Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model. Neural Comput 16:2533-61 [PubMed]

Rossert C, Solinas S, D`Angelo, Dean P, Porrill J (2014) Model cerebellar granule cells can faithfully transmit modulated firing rate signals Front. Cell. Neurosci. 8:304 [Journal]

   Information transmission in cerebellar granule cell models (Rossert et al. 2014) [Model]

Rossert C, Straka H, Moore LE, Glasauer S (2011) Cellular and network contributions to vestibular signal processing: impact of ion conductances, synaptic inhibition and noise. J Neurosci 31:8359-8372 [Journal]

   Frog second-order vestibular neuron models (Rossert et al. 2011) [Model]

Sakai Y, Fukai T (2008) The actor-critic learning is behind the matching law: matching versus optimal behaviors. Neural Comput 20:227-51 [PubMed]

Salazar-Gatzimas E, Chen J, Creamer MS, Mano O, Mandel HB, Matulis CA, Pottackal J, Clark DA (2016) Direct Measurement of Correlation Responses in Drosophila Elementary Motion Detectors Reveals Fast Timescale Tuning. Neuron 92:227-239 [Journal] [PubMed]

   Comparing correlation responses to motion estimation models (Salazar-Gatzimas et al. 2016) [Model]

Shimazaki H, Shinomoto S (2007) A method for selecting the bin size of a time histogram. Neural Comput 19:1503-27 [PubMed]

Sterratt D, Graham B, Gillies A, Willshaw D (2011) Principles of Computational Modelling in Neuroscience, Cambridge University Press :1-401 [Journal]

   Principles of Computational Modelling in Neuroscience (Book) (Sterratt et al. 2011) [Model]

Tejada J, Arisi GM, GarciĀ­a-Cairasco N, Roque AC (2012) Morphological alterations in newly born dentate gyrus granule cells that emerge after status epilepticus contribute to make them less excitable. PLoS One 7:e40726-78 [Journal] [PubMed]

   Dentate gyrus network model (Tejada et al 2014) [Model]

Teka W, Marinov TM, Santamaria F (2014) Neuronal spike timing adaptation described with a fractional leaky integrate-and-fire model. PLoS Comput Biol 10:e1003526 [Journal] [PubMed]

   Fractional leaky integrate-and-fire model (Teka et al. 2014) [Model]

Tikidji-Hamburyan RA, Narayana V, Bozkus Z, El-Ghazawi TA (2017) Software for Brain Network Simulations: A Comparative Study Front. Neuroinform. [Journal]

   Brain networks simulators - a comparative study (Tikidji-Hamburyan et al 2017) [Model]

Toyoizumi T, Pfister JP, Aihara K, Gerstner W (2007) Optimality model of unsupervised spike-timing-dependent plasticity: synaptic memory and weight distribution. Neural Comput 19:639-71 [PubMed]

Triesch J (2007) Synergies between intrinsic and synaptic plasticity mechanisms. Neural Comput 19:885-909 [PubMed]

van Elburg RA, van Ooyen A (2010) Impact of dendritic size and dendritic topology on burst firing in pyramidal cells. PLoS Comput Biol 6:e1000781 [Journal] [PubMed]

   Impact of dendritic size and topology on pyramidal cell burst firing (van Elburg and van Ooyen 2010) [Model]

Vasilaki E, Giugliano M (2014) Emergence of connectivity motifs in networks of model neurons with short- and long-term plastic synapses. PLoS One 9:e84626 [Journal] [PubMed]

   Emergence of Connectivity Motifs in Networks of Model Neurons (Vasilaki, Giugliano 2014) [Model]

Vogelstein RJ, Mallik U, Culurciello E, Cauwenberghs G, Etienne-Cummings R (2007) A multichip neuromorphic system for spike-based visual information processing. Neural Comput 19:2281-300 [PubMed]

Zachariou M, Alexander SP, Coombes S, Christodoulou C (2013) A biophysical model of endocannabinoid-mediated short term depression in hippocampal inhibition. PLoS One 8:e58926 [Journal] [PubMed]

(47 refs)