Citation Relationships



Kühn AA, Kempf F, Brücke C, Gaynor Doyle L, Martinez-Torres I, Pogosyan A, Trottenberg T, Kupsch A, Schneider GH, Hariz MI, Vandenberghe W, Nuttin B, Brown P (2008) High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson's disease in parallel with improvement in motor performance. J Neurosci 28:6165-73 [PubMed]

References and models cited by this paper

References and models that cite this paper

Edgerton JR, Hanson JE, Günay C, Jaeger D (2010) Dendritic sodium channels regulate network integration in globus pallidus neurons: a modeling study. J Neurosci 30:15146-59 [Journal] [PubMed]

   Globus pallidus neuron models with differing dendritic Na channel expression (Edgerton et al., 2010) [Model]

Edgerton JR, Jaeger D (2011) Dendritic sodium channels promote active decorrelation and reduce phase locking to parkinsonian input oscillations in model globus pallidus neurons. J Neurosci 31:10919-36 [Journal] [PubMed]

   Globus pallidus neuron models with differing dendritic Na channel expression (Edgerton et al., 2010) [Model]

Grado LL, Johnson MD, Netoff TI (2018) Bayesian adaptive dual control of deep brain stimulation in a computational model of Parkinson's disease. PLoS Comput Biol 14:e1006606 [Journal] [PubMed]

   Adaptive dual control of deep brain stimulation in Parkinsons disease simulations (Grado et al 2018) [Model]

Kumaravelu K, Brocker DT, Grill WM (2016) A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson's disease. J Comput Neurosci 40:207-29 [Journal] [PubMed]

   Cortex-Basal Ganglia-Thalamus network model (Kumaravelu et al. 2016) [Model]

Popovych OV, Lysyansky B, Rosenblum M, Pikovsky A, Tass PA (2017) Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation. PLoS One 12:e0173363 [Journal] [PubMed]

(5 refs)