Citation Relationships



Huys QJ, Paninski L (2009) Smoothing of, and parameter estimation from, noisy biophysical recordings. PLoS Comput Biol 5:e1000379-80[PubMed]

   Smoothing of, and parameter estimation from, noisy biophysical recordings (Huys & Paninski 2009)

References and models cited by this paper

References and models that cite this paper

Achard P, De Schutter E (2006) Complex parameter landscape for a complex neuron model. PLoS Comput Biol 2:e94 [PubMed]

Baker BJ, Kosmidis EK, Vucinic D, Falk CX, Cohen LB, Djurisic M, Zecevic D (2005) Imaging brain activity with voltage- and calcium-sensitive dyes. Cell Mol Neurobiol 25:245-82

Baldi P, Vanier MC, Bower JM (1998) On the use of Bayesian methods for evaluating compartmental neural models. J Comput Neurosci 5:285-314 [PubMed]

Bhalla US, Bower JM (1993) Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb. J Neurophysiol 69:1948-65 [Journal] [PubMed]

   Granule Cells of the Olfactory Bulb (Simoes_De_Souza et al. 2014) [Model]
   Olfactory Mitral Cell (Bhalla, Bower 1993) [Model]

Bickel P,Li B,Bengtsson T (2008) Sharp failure rates for the bootstrap particle filter in high dimensions IMS Collections 3:318-329

Bush K, Knight J, Anderson C (2005) Optimizing conductance parameters of cortical neural models via electrotonic partitions. Neural Netw 18:488-96 [PubMed]

Canepari M, Djurisic M, Zecevic D (2007) Dendritic signals from rat hippocampal CA1 pyramidal neurons during coincident pre- and post-synaptic activity: a combined voltage- and calcium-imaging study. J Physiol 580:463-84 [PubMed]

Cantoni E, Flemming JM, Ronchetti E (2005) Variable selection for marginal longitudinal generalized linear models. Biometrics 61:507-14 [Journal] [PubMed]

Chien CB, Pine J (1991) Voltage-sensitive dye recording of action potentials and synaptic potentials from sympathetic microcultures. Biophys J 60:697-711 [PubMed]

Dayan P, Abbott LF (2001) Theoretical Neuroscience. Computational and Mathematical Modeling of Neural Systems

Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39:1-38

Djurisic M, Antic S, Chen WR, Zecevic D (2004) Voltage imaging from dendrites of mitral cells: EPSP attenuation and spike trigger zones. J Neurosci 24:6703-14 [Journal] [PubMed]

Djurisic M, Zecevic D (2005) Imaging of spiking and subthreshold activity of mitral cells with voltage-sensitive dyes. Ann N Y Acad Sci 1048:92-102 [Journal] [PubMed]

Douc R,Cappe O,Moulines E (2005) Comparison of Resampling Schemes for Particle Filtering Image and Signal Processing and Analysis, ISPA 2005 Proceedings of the 4th International Symposium on. :64-69

Druckmann S, Banitt Y, Gidon A, Schurmann F, Markram H, Segev I (2007) A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Front Neurosci 1:7-18 [PubMed]

Druckmann S, Berger TK, Hill S, Schurmann F, Markram H, Segev I (2008) Evaluating automated parameter constraining procedures of neuron models by experimental and surrogate data. Biol Cybern 99:371-9 [PubMed]

Durbin J,Koopman S (2001) Time Series Analysis by State Space Methods

Friston K, Mattout J, Trujillo-Barreto N, Ashburner J, Penny W (2007) Variational free energy and the Laplace approximation. Neuroimage 34:220-34 [Journal] [PubMed]

Gerstner W, Kistler WM (2002) Spiking neuron models

Golowasch J, Goldman MS, Abbott LF, Marder E (2002) Failure of averaging in the construction of a conductance-based neuron model. J Neurophysiol 87:1129-31 [Journal] [PubMed]

Han B, Zhu Y, Comaniciu D, Davis LS (2009) Visual tracking by continuous density propagation in sequential bayesian filtering framework. IEEE Trans Pattern Anal Mach Intell 31:919-30 [Journal] [PubMed]

Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: A Database to Support Computational Neuroscience. J Comput Neurosci 17:7-11 [Journal] [PubMed]

Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500-44 [Journal] [PubMed]

   Squid axon (Hodgkin, Huxley 1952) (LabAXON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (NEURON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SNNAP) [Model]
   Squid axon (Hodgkin, Huxley 1952) used in (Chen et al 2010) (R language) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SBML, XPP, other) [Model]

Huys QJ, Ahrens MB, Paninski L (2006) Efficient estimation of detailed single-neuron models. J Neurophysiol 96:872-90 [Journal] [PubMed]

   Efficient estimation of detailed single-neuron models (Huys et al. 2006) [Model]

Huys QJM,Paninski L (2006) Model-based optimal interpolation and filtering for noisy, intermittent biophysical recordings Fifteenth Annual Computational Neuroscience Meeting

Iyer V, Hoogland TM, Saggau P (2006) Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy. J Neurophysiol 95:535-45 [PubMed]

Jimenez J,Ozaki T (2006) An approximate innovation method for the estimation of diffusion processes from discrete data Journal of Time Series Analysis 27:77-97

Jolivet R, Lewis TJ, Gerstner W (2004) Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. J Neurophysiol 92:959-76 [Journal] [PubMed]

   Spike Response Model simulator (Jolivet et al. 2004, 2006, 2008) [Model]

Julier SJ, Uhlmann JK (1997) A new extension of the Kalman filter to nonlinear systems P Spie 3068:182-193

Keren N, Peled N, Korngreen A (2005) Constraining compartmental models using multiple voltage recordings and genetic algorithms. J Neurophysiol 94:3730-42 [Journal] [PubMed]

Koch C (1999) Biophysics Of Computation: Information Processing in Single Neurons

Liu J (2002) Monte Carlo Strategies in Scientific Computing

Morse TM, Davison AP, Hines ML (2001) Parameter space reduction in neuron model optimization through minimization of residual voltage clamp current Program No. 606.5. 2001 Abstract Viewer-Itinerary Planner

Nicodemus KK, Malley JD (2009) Predictor correlation impacts machine learning algorithms: implications for genomic studies. Bioinformatics 25:1884-90 [Journal] [PubMed]

Nuriya M, Jiang J, Nemet B, Eisenthal KB, Yuste R (2006) Imaging membrane potential in dendritic spines. Proc Natl Acad Sci U S A 103:786-90 [PubMed]

Olsson RK, Petersen KB, Lehn-Schioler T (2007) State-Space Models: From the EM Algorithm to a Gradient Approach Neural Comput 19:1097-1111

Paninski L, Ahmadian Y, Ferreira DG, Koyama S, Rahnama Rad K, Vidne M, Vogelstein J, Wu W (2010) A new look at state-space models for neural data. J Comput Neurosci 29:107-126 [Journal] [PubMed]

Penny W, Kiebel S, Friston K (2003) Variational Bayesian inference for fMRI time series. Neuroimage 19:727-41 [PubMed]

Poirazi P, Brannon T, Mel BW (2003a) Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron 37:977-987 [Journal] [PubMed]

   CA1 pyramidal neuron: as a 2-layer NN and subthreshold synaptic summation (Poirazi et al 2003) [Model]

Prinz AA, Billimoria CP, Marder E (2003) Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. J Neurophysiol 90:3998-4015 [Journal] [PubMed]

Riera JJ, Watanabe J, Kazuki I, Naoki M, Aubert E, Ozaki T, Kawashima R (2004) A state-space model of the hemodynamic approach: nonlinear filtering of BOLD signals. Neuroimage 21:547-67 [Journal] [PubMed]

Roth A, Hausser M (2001) Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings. J Physiol 535:445-72 [PubMed]

Roweis S,Ghahramani Z (1998) Learning nonlinear dynamical systems using an EM algorithm Advances in Neural Information Processing Systems (NIPS)

Royeck M, Horstmann MT, Remy S, Reitze M, Yaari Y, Beck H (2008) Role of Axonal NaV1.6 Sodium Channels in Action Potential Initiation of CA1 Pyramidal Neurons. J Neurophysiol [Journal] [PubMed]

   Axonal NaV1.6 Sodium Channels in AP Initiation of CA1 Pyramidal Neurons (Royeck et al. 2008) [Model]

Saggau P (2006) New methods and uses for fast optical scanning. Curr Opin Neurobiol 16:543-50 [Journal] [PubMed]

Salakhutdinov R, Roweis S, Ghahramani Z (2003) Optimization with EM and expectation-conjugate-gradient Proc Int Conf Mach Learn

Schaefer AT, Larkum ME, Sakmann B, Roth A (2003) Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. J Neurophysiol 89:3143-54 [Journal] [PubMed]

   Pyramidal neuron coincidence detection tuned by dendritic branching pattern (Schaefer et al 2003) [Model]

Sotero RC, Trujillo-Barreto NJ, Jimenez JC, Carbonell F, Rodríguez-Rojas R (2009) Identification and comparison of stochastic metabolic-hemodynamic models (sMHM) for the generation of the BOLD signal. J Comput Neurosci 26:251-69 [PubMed]

Stuart GJ, Palmer LM (2006) Imaging membrane potential in dendrites and axons of single neurons. Pflugers Arch 453:403-10 [PubMed]

Traub RD, Wong RK, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol 66:635-50 [Journal] [PubMed]

Van Geit W, Achard P, De Schutter E (2007) Neurofitter: a parameter tuning package for a wide range of electrophysiological neuron models. Front Neuroinformatics 1:1-42 [PubMed]

Vanier MC, Bower JM (1999) A comparative survey of automated parameter-search methods for compartmental neural models. J Comput Neurosci 7:149-71 [Journal] [PubMed]

Vogelstein JT, Watson BO, Packer AM, Yuste R, Jedynak B, Paninski L (2009) Spike inference from calcium imaging using sequential Monte Carlo methods. Biophys J 97:636-55 [Journal] [PubMed]

Wan E,van der Merwe R (2001) The Unscented Kalman Filter Kalman Filtering and Neural Networks :221-280

Wood R, Gurney KN, Wilson CJ (2004) A novel parameter optimization technique for compartmental models applied to a model of a striatal mediumspiny neuron Neurocomputing 60:1109-1116

Friedrich P, Vella M, Gulyas AI, Freund TF, Kali S (2014) A flexible, interactive software tool for fitting the parameters of neuronal models. Front Neuroinform 8:63 [Journal] [PubMed]

   Software (called Optimizer) for fitting neuronal models (Friedrich et al. 2014) [Model]

Lepora NF, Overton PG,Gurney K (2012) Efficient fitting of conductance-based model neurons from somatic current clamp. J. Comp. Neuro. 32(1):1-24 [Journal] [PubMed]

   Parameter estimation for Hodgkin-Huxley based models of cortical neurons (Lepora et al. 2011) [Model]

Rumbell TH, Draguljic D, Yadav A, Hof PR, Luebke JI, Weaver CM (2016) Automated evolutionary optimization of ion channel conductances and kinetics in models of young and aged rhesus monkey pyramidal neurons. J Comput Neurosci 41:65-90 [Journal] [PubMed]

   Rhesus Monkey Young and Aged L3 PFC Pyramidal Neurons (Rumbell et al. 2016) [Model]

(58 refs)