Citation Relationships



Wilson CJ, Kawaguchi Y (1996) The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J Neurosci 16:2397-410 [PubMed]

References and models cited by this paper

References and models that cite this paper

Benucci A, Verschure PF, König P (2004) Two-state membrane potential fluctuations driven by weak pairwise correlations. Neural Comput 16:2351-78 [Journal] [PubMed]

Corbit VL, Whalen TC, Zitelli KT, Crilly SY, Rubin JE, Gittis AH (2016) Pallidostriatal Projections Promote ß Oscillations in a Dopamine-Depleted Biophysical Network Model. J Neurosci 36:5556-71 [Journal] [PubMed]

   Pallidostriatal projections promote beta oscillations (Corbit, Whalen, et al 2016) [Model]

Damodaran S, Evans RC, Blackwell KT (2014) Synchronized firing of fast-spiking interneurons is critical to maintain balanced firing between direct and indirect pathway neurons of the striatum. J Neurophysiol 111:836-48 [Journal] [PubMed]

   Synchronicity of fast-spiking interneurons balances medium-spiny neurons (Damodaran et al. 2014) [Model]

Du K, Wu YW, Lindroos R, Liu Y, Rózsa B, Katona G, Ding JB, Kotaleski JH (2017) Cell-type-specific inhibition of the dendritic plateau potential in striatal spiny projection neurons. Proc Natl Acad Sci U S A 114:E7612-E7621 [Journal] [PubMed]

   Specific inhibition of dendritic plateau potential in striatal projection neurons (Du et al 2017) [Model]

Frank MJ (2005) Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J Cogn Neurosci 17:51-72 [Journal] [PubMed]

   Dynamic dopamine modulation in the basal ganglia: Learning in Parkinson (Frank et al 2004,2005) [Model]

Gruber AJ, Dayan P, Gutkin BS, Solla SA (2006) Dopamine modulation in the basal ganglia locks the gate to working memory. J Comput Neurosci 20:153-66 [Journal] [PubMed]

Gruber AJ, Solla SA, Surmeier DJ, Houk JC (2003) Modulation of striatal single units by expected reward: a spiny neuron model displaying dopamine-induced bistability. J Neurophysiol 90:1095-114 [Journal] [PubMed]

   Spiny neuron model with dopamine-induced bistability (Gruber et al 2003) [Model]

Guthrie M, Leblois A, Garenne A, Boraud T (2013) Interaction between cognitive and motor cortico-basal ganglia loops during decision making: a computational study. J Neurophysiol 109:3025-40 [Journal] [PubMed]

   Cognitive and motor cortico-basal ganglia interactions during decision making (Guthrie et al 2013) [Model]

Haag J, Theunissen F, Borst A (1997) The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: II. Active membrane properties. J Comput Neurosci 4:349-69 [PubMed]

   Fly lobular plate VS cell (Borst and Haag 1996, et al. 1997, et al. 1999) [Model]

Haag J, Vermeulen A, Borst A (1999) The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: III. Visual response properties. J Comput Neurosci 7:213-34 [PubMed]

   Fly lobular plate VS cell (Borst and Haag 1996, et al. 1997, et al. 1999) [Model]

Hjorth J, Blackwell KT, Kotaleski JH (2009) Gap junctions between striatal fast-spiking interneurons regulate spiking activity and synchronization as a function of cortical activity. J Neurosci 29:5276-86 [Journal] [PubMed]

   Gap junction coupled network of striatal fast spiking interneurons (Hjorth et al. 2009) [Model]

Humphries MD, Lepora N, Wood R, Gurney K (2009) Capturing dopaminergic modulation and bimodal membrane behaviour of striatal medium spiny neurons in accurate, reduced models. Front Comput Neurosci 3:26 [Journal] [PubMed]

   Dopamine-modulated medium spiny neuron, reduced model (Humphries et al. 2009) [Model]

Humphries MD, Stewart RD, Gurney KN (2006) A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J Neurosci 26:12921-42 [Journal] [PubMed]

   Spiking neuron model of the basal ganglia (Humphries et al 2006) [Model]

Kepecs A, Raghavachari S (2007) Gating information by two-state membrane potential fluctuations. J Neurophysiol 97:3015-23 [Journal] [PubMed]

Koos T, Tepper JM, Wilson CJ (2004) Comparison of IPSCs evoked by spiny and fast-spiking neurons in the neostriatum. J Neurosci 24:7916-22 [Journal] [PubMed]

Kotaleski JH, Plenz D, Blackwell KT (2006) Using potassium currents to solve signal-to-noise problems in inhibitory feedforward networks of the striatum. J Neurophysiol 95:331-41 [Journal] [PubMed]

   FS Striatal interneuron: K currents solve signal-to-noise problems (Kotaleski et al 2006) [Model]

Lindskog M, Kim M, Wikström MA, Blackwell KT, Kotaleski JH (2006) Transient calcium and dopamine increase PKA activity and DARPP-32 phosphorylation. PLoS Comput Biol 2:e119 [Journal] [PubMed]

   Model of DARPP-32 phosphorylation in striatal medium spiny neurons (Lindskog et al. 2006) [Model]

Nakano T, Doi T, Yoshimoto J, Doya K (2010) A kinetic model of dopamine- and calcium-dependent striatal synaptic plasticity. PLoS Comput Biol 6:e1000670 [Journal] [PubMed]

   A kinetic model of dopamine- and calcium-dependent striatal synaptic plasticity (Nakano et al. 2010) [Model]

Nakano T, Yoshimoto J, Doya K (2013) A model-based prediction of the calcium responses in the striatal synaptic spines depending on the timing of cortical and dopaminergic inputs and post-synaptic spikes. Front Comput Neurosci 7:119 [Journal] [PubMed]

   Calcium response prediction in the striatal spines depending on input timing (Nakano et al. 2013) [Model]

Plenz D (2003) When inhibition goes incognito: feedback interaction between spiny projection neurons in striatal function. Trends Neurosci 26:436-43 [Journal] [PubMed]

Richardson MJ, Melamed O, Silberberg G, Gerstner W, Markram H (2005) Short-term synaptic plasticity orchestrates the response of pyramidal cells and interneurons to population bursts. J Comput Neurosci 18:323-31 [Journal] [PubMed]

Rossant C, Leijon S, Magnusson AK, Brette R (2011) Sensitivity of noisy neurons to coincident inputs. J Neurosci 31:17193-206 [Journal] [PubMed]

   Sensitivity of noisy neurons to coincident inputs (Rossant et al. 2011) [Model]

Scheler G (2014) Learning intrinsic excitability in medium spiny neurons F1000Research 2:88 [Journal]

   Learning intrinsic excitability in Medium Spiny Neurons (Scheler 2014) [Model]

Shen W, Hernandez-Lopez S, Tkatch T, Held JE, Surmeier DJ (2004) Kv1.2-containing K+ channels regulate subthreshold excitability of striatal medium spiny neurons. J Neurophysiol 91:1337-49 [Journal] [PubMed]

Stacey WC, Durand DM (2000) Stochastic resonance improves signal detection in hippocampal CA1 neurons. J Neurophysiol 83:1394-402 [Journal] [PubMed]

Stacey WC, Durand DM (2001) Synaptic noise improves detection of subthreshold signals in hippocampal CA1 neurons. J Neurophysiol 86:1104-12 [Journal] [PubMed]

Stacey WC, Krieger A, Litt B (2011) Network recruitment to coherent oscillations in a hippocampal computer model. J Neurophysiol 105:1464-81 [Journal] [PubMed]

   Network recruitment to coherent oscillations in a hippocampal model (Stacey et al. 2011) [Model]

Steephen JE, Manchanda R (2009) Differences in biophysical properties of nucleus accumbens medium spiny neurons emerging from inactivation of inward rectifying potassium currents. J Comput Neurosci 27:453-70 [Journal] [PubMed]

   Effects of KIR current inactivation in NAc Medium Spiny Neurons (Steephen and Manchanda 2009) [Model]

(28 refs)