Citation Relationships



Brette R (2004) Dynamics of one-dimensional spiking neuron models. J Math Biol 48:38-56 [PubMed]

   Phase locking in leaky integrate-and-fire model (Brette 2004)

References and models cited by this paper

References and models that cite this paper

Alstrom P, Christiansen B, Levinsen MT (1988) Nonchaotic transition from quasiperiodicity to complete phase locking. Phys Rev Lett 61:1679-1682 [Journal] [PubMed]

Artun OB, Shouval HZ, Cooper LN (1998) The effect of dynamic synapses on spatiotemporal receptive fields in visual cortex. Proc Natl Acad Sci U S A 95:11999-2003 [PubMed]

Ascoli C, Barbi M, Chillemi S, Petracchi D (1977) Phase-locked responses in the Limulus lateral eye. Theoretical and experimental investigation. Biophys J 19:219-40 [Journal] [PubMed]

Brette R (2003) Rotation numbers of discontinuous orientation-preserving circle maps Set-Valued Analysis 11(4):359-371

Brette R, Guigon E (2003) Reliability of spike timing is a general property of spiking model neurons. Neural Comput 15:279-308 [Journal] [PubMed]

   Reliability of spike timing is a general property of spiking model neurons (Brette & Guigon 2003) [Model]

Coombes S (1999) Liapunov exponents and mode-locked solutions for integrate-and-fire dynamical systems Phys. Lett. A 255(1-2):49-57

Cornfeld I, Fomin S, Sinai Y (1981) Ergodic theory Grundlehren der mathematischen Wissenschaften

De_melo W, Van_strien S (1993) One-dimensional dynamics

Denjoy A (1932) Sur les courbes definies par les equations differentielles a la surface du tore J Math Pures Appl 9:333-375

Ermentrout B (1996) Type I membranes, phase resetting curves, and synchrony. Neural Comput 8:979-1001 [PubMed]

Ermentrout GB, Kopell N (1986) Parabolic bursting in an excitable system coupled with a slow oscillation. Siam J Appl Math 46:233-253

Glass L, Belair J (1986) Continuation of Arnold tongues in mathematical models of periodically forced biological oscillators Lecture Notes in Biomathematics 66:232-243

Glass L, Perez R (1982) Fine structure of phase locking Phys Rev Lett 48:1772-1775

Guttman R, Feldman L, Jakobsson E (1980) Frequency entrainment of squid axon membrane. J Membr Biol 56:9-18 [PubMed]

Herman M (1977) Mesure de Lebesgue et nombre de rotation Lecture Notes in Math 597:271-293

HODGKIN AL, HUXLEY AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500-44 [Journal] [PubMed]

   Squid axon (Hodgkin, Huxley 1952) (LabAXON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (NEURON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SNNAP) [Model]
   Squid axon (Hodgkin, Huxley 1952) used in (Chen et al 2010) (R language) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SBML, XPP, other) [Model]

Jensen M, Bak P, Bohr T (1983) Complete devil's staircase, fractal dimension and universality of mode-locking structure in the circle map Phys Rev Lett 50:1637-1639

Keener J, Hoppensteadt F, Rinzel J (1981) Integrate-and-fire models of nerve membrane response to oscillatory input. Siam J Appl Math 41:503-517

Keener JP (1980) Chaotic behavior in piecewise continuous difference equations Trans Of The AMS 261:589-604

Knight BW (1972) Dynamics of encoding in a population of neurons. J Gen Physiol 59:734-66 [PubMed]

Köppl C (1997) Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. J Neurosci 17:3312-21 [PubMed]

Kwapisz J (2000) Poincare rotation number for maps of the real line with almost periodic displacement Nonlinearity 13:1841-1854

Lapicque L (1907) Recherches quantitatives sur lexcitation electrique des nerfs traitee comme une polarisation J Physiol Pathol Gen 9:620-635 [Journal]

Latham PE, Richmond BJ, Nelson PG, Nirenberg S (2000) Intrinsic dynamics in neuronal networks. I. Theory. J Neurophysiol 83:808-27 [Journal] [PubMed]

Poincare H (1885) Sur les courbes definies par les equations differentielles J Math Pures App I

Rescigno A, Stein RB, Purple RL, Poppele RE (1970) A neuronal model for the discharge patterns produced by cyclic inputs. Bull Math Biophys 32:337-53 [PubMed]

Rhodes F, Thompson C (1986) Rotation numbers for monotone functions on the circle J London Math Soc 2:360-368

Rhodes F, Thompson C (1991) Topologies and rotation numbers for families of monotone functions on the circle J London Math Soc 2:156-170

Somers DC, Nelson SB, Sur M (1995) An emergent model of orientation selectivity in cat visual cortical simple cells. J Neurosci 15:5448-65 [PubMed]

Song S, Abbott LF (2001) Cortical development and remapping through spike timing-dependent plasticity. Neuron 32:339-50 [PubMed]

Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci 3:919-26 [Journal] [PubMed]

Swiatek G (1988) Rational rotation numbers for maps of the circle Commun Math Phys 119:109-128

Tass P, Rosenblum M, Weule J, Kurths J, Pikovsky A, Volkmann J, Schnitzler A, Freund H (1998) Detection of n:m phase locking from noisy data: Application to magnetoencephalography Phys Rev Lett 81:3291-3294

Tiesinga PHE (2002) Phys Rev E 65:041913

Troyer TW, Miller KD (1997) Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell. Neural Comput 9:971-83 [PubMed]

Veerman JJP (1989) Irrational rotation numbers Nonlinearity 2:419-428

Brette R (2012) Computing with neural synchrony. PLoS Comput Biol 8:e1002561 [Journal] [PubMed]

   Computing with neural synchrony (Brette 2012) [Model]

Touboul J, Brette R (2008) Dynamics and bifurcations of the adaptive exponential integrate-and-fire model. Biol Cybern 99:319-34 [Journal] [PubMed]

   Brette-Gerstner model (Touboul and Brette 2008) [Model]

(38 refs)