Citation Relationships



Graupner M, Brunel N (2012) Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location. Proc Natl Acad Sci U S A 109:3991-6 [PubMed]

References and models cited by this paper

References and models that cite this paper

Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3 Suppl:1178-83 [Journal] [PubMed]

Bagal AA, Kao JP, Tang CM, Thompson SM (2005) Long-term potentiation of exogenous glutamate responses at single dendritic spines. Proc Natl Acad Sci U S A 102:14434-9 [Journal] [PubMed]

Bell CC, Han VZ, Sugawara Y, Grant K (1997) Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387:278-81 [Journal] [PubMed]

Bender VA, Bender KJ, Brasier DJ, Feldman DE (2006) Two coincidence detectors for spike timing-dependent plasticity in somatosensory cortex. J Neurosci 26:4166-77 [Journal] [PubMed]

Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464-72 [PubMed]

Bi GQ, Wang HX (2002) Temporal asymmetry in spike timing-dependent synaptic plasticity. Physiol Behav 77:551-5 [PubMed]

Brader JM, Senn W, Fusi S (2007) Learning real-world stimuli in a neural network with spike-driven synaptic dynamics. Neural Comput 19:2881-912 [Journal] [PubMed]

Campanac E, Debanne D (2008) Spike timing-dependent plasticity: a learning rule for dendritic integration in rat CA1 pyramidal neurons. J Physiol 586:779-93 [Journal] [PubMed]

Clopath C, Büsing L, Vasilaki E, Gerstner W (2010) Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat Neurosci 13:344-52 [Journal] [PubMed]

   Voltage-based STDP synapse (Clopath et al. 2010) [Model]

Colbran RJ, Brown AM (2004) Calcium/calmodulin-dependent protein kinase II and synaptic plasticity. Curr Opin Neurobiol 14:318-27 [Journal] [PubMed]

Dudek SM, Bear MF (1992) Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci U S A 89:4363-7 [PubMed]

Froemke RC, Dan Y (2002) Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416:433-8 [Journal] [PubMed]

Froemke RC, Tsay IA, Raad M, Long JD, Dan Y (2006) Contribution of individual spikes in burst-induced long-term synaptic modification. J Neurophysiol 95:1620-9 [Journal] [PubMed]

Graupner M, Brunel N (2007) STDP in a bistable synapse model based on CaMKII and associated signaling pathways. PLoS Comput Biol 3:e221 [Journal] [PubMed]

   CaMKII system exhibiting bistability with respect to calcium (Graupner and Brunel 2007) [Model]

Graupner M, Brunel N (2010) Mechanisms of induction and maintenance of spike-timing dependent plasticity in biophysical synapse models. Front Comput Neurosci [Journal] [PubMed]

Hashimotodani Y, Ohno-Shosaku T, Tsubokawa H, Ogata H, Emoto K, Maejima T, Araishi K, Shin HS, Kano M (2005) Phospholipase Cbeta serves as a coincidence detector through its Ca2+ dependency for triggering retrograde endocannabinoid signal. Neuron 45:257-68 [Journal] [PubMed]

Ismailov I, Kalikulov D, Inoue T, Friedlander MJ (2004) The kinetic profile of intracellular calcium predicts long-term potentiation and long-term depression. J Neurosci 24:9847-61 [Journal] [PubMed]

Letzkus JJ, Kampa BM, Stuart GJ (2006) Learning rules for spike timing-dependent plasticity depend on dendritic synapse location. J Neurosci 26:10420-9 [Journal] [PubMed]

   STDP depends on dendritic synapse location (Letzkus et al. 2006) [Model]

Maejima T, Oka S, Hashimotodani Y, Ohno-Shosaku T, Aiba A, Wu D, Waku K, Sugiura T, Kano M (2005) Synaptically driven endocannabinoid release requires Ca2+-assisted metabotropic glutamate receptor subtype 1 to phospholipase Cbeta4 signaling cascade in the cerebellum. J Neurosci 25:6826-35 [Journal] [PubMed]

Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275:209-13 [PubMed]

Magee JC, Johnston D (2005) Plasticity of dendritic function. Curr Opin Neurobiol 15:334-42 [Journal] [PubMed]

Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5-21 [Journal] [PubMed]

Malenka RC, Kauer JA, Zucker RS, Nicoll RA (1988) Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science 242:81-4 [PubMed]

Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213-5 [PubMed]

Mizuno T, Kanazawa I, Sakurai M (2001) Differential induction of LTP and LTD is not determined solely by instantaneous calcium concentration: an essential involvement of a temporal factor. Eur J Neurosci 14:701-8 [PubMed]

Munton RP, Vizi S, Mansuy IM (2004) The role of protein phosphatase-1 in the modulation of synaptic and structural plasticity. FEBS Lett 567:121-8 [Journal] [PubMed]

Neveu D, Zucker RS (1996) Long-lasting potentiation and depression without presynaptic activity. J Neurophysiol 75:2157-60 [Journal] [PubMed]

Nevian T, Sakmann B (2006) Spine Ca2+ signaling in spike-timing-dependent plasticity. J Neurosci 26:11001-13 [Journal] [PubMed]

O'Connor DH, Wittenberg GM, Wang SS (2005) Graded bidirectional synaptic plasticity is composed of switch-like unitary events. Proc Natl Acad Sci U S A 102:9679-84 [Journal] [PubMed]

O'Connor DH, Wittenberg GM, Wang SS (2005) Dissection of bidirectional synaptic plasticity into saturable unidirectional processes. J Neurophysiol 94:1565-73 [Journal] [PubMed]

Petersen CC, Malenka RC, Nicoll RA, Hopfield JJ (1998) All-or-none potentiation at CA3-CA1 synapses. Proc Natl Acad Sci U S A 95:4732-7 [PubMed]

Pfister JP, Gerstner W (2006) Triplets of spikes in a model of spike timing-dependent plasticity. J Neurosci 26:9673-82 [Journal] [PubMed]

Rubin JE, Gerkin RC, Bi GQ, Chow CC (2005) Calcium time course as a signal for spike-timing-dependent plasticity. J Neurophysiol 93:2600-13 [Journal] [PubMed]

Sabatini BL, Oertner TG, Svoboda K (2002) The life cycle of Ca(2+) ions in dendritic spines. Neuron 33:439-52 [PubMed]

Shouval HZ, Bear MF, Cooper LN (2002) A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc Natl Acad Sci U S A 99:10831-6 [Journal] [PubMed]

Sjöström PJ, Häusser M (2006) A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron 51:227-38 [Journal] [PubMed]

Sjöström PJ, Turrigiano GG, Nelson SB (2001) Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32:1149-64 [PubMed]

Sjöström PJ, Turrigiano GG, Nelson SB (2003) Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron 39:641-54 [PubMed]

Wang HX, Gerkin RC, Nauen DW, Bi GQ (2005) Coactivation and timing-dependent integration of synaptic potentiation and depression. Nat Neurosci 8:187-93 [Journal] [PubMed]

Wittenberg GM, Wang SS (2006) Malleability of spike-timing-dependent plasticity at the CA3-CA1 synapse. J Neurosci 26:6610-7 [Journal] [PubMed]

Yang SN, Tang YG, Zucker RS (1999) Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. J Neurophysiol 81:781-7 [Journal] [PubMed]

Zhabotinsky AM (2000) Bistability in the Ca(2+)/calmodulin-dependent protein kinase-phosphatase system. Biophys J 79:2211-21 [Journal] [PubMed]

Zhang JC, Lau PM, Bi GQ (2009) Gain in sensitivity and loss in temporal contrast of STDP by dopaminergic modulation at hippocampal synapses. Proc Natl Acad Sci U S A 106:13028-33 [Journal] [PubMed]

Bono J, Clopath C (2017) Modeling somatic and dendritic spike mediated plasticity at the single neuron and network level. Nat Commun 8:706 [Journal] [PubMed]

   Modeling dendritic spikes and plasticity (Bono and Clopath 2017) [Model]

Costa RP, Froemke RC, Sjöström PJ, van Rossum MC (2015) Unified pre- and postsynaptic long-term plasticity enables reliable and flexible learning. Elife [Journal] [PubMed]

   Memory savings through unified pre- and postsynaptic STDP (Costa et al 2015) [Model]

Costa RP, Padamsey Z, D'Amour JA, Emptage NJ, Froemke RC, Vogels TP (2017) Synaptic Transmission Optimization Predicts Expression Loci of Long-Term Plasticity. Neuron 96:177-189.e7 [Journal] [PubMed]

   Statistical Long-term Synaptic Plasticity (statLTSP) (Costa et al 2017) [Model]

Cui Y, Prokin I, Xu H, Delord B, Genet S, Venance L, Berry H (2016) Endocannabinoid dynamics gate spike-timing dependent depression and potentiation. Elife 5:e13185 [Journal] [PubMed]

   Endocannabinoid dynamics gate spike-timing dependent depression and potentiation (Cui et al 2016) [Model]

Doron M, Chindemi G, Muller E, Markram H, Segev I (2017) Timed Synaptic Inhibition Shapes NMDA Spikes, Influencing Local Dendritic Processing and Global I/O Properties of Cortical Neurons. Cell Rep 21:1550-1561 [Journal] [PubMed]

   Shaping NMDA spikes by timed synaptic inhibition on L5PC (Doron et al. 2017) [Model]

Evans RC, Maniar YM, Blackwell KT (2013) Dynamic modulation of spike timing-dependent calcium influx during corticostriatal upstates. J Neurophysiol 110:1631-45 [Journal] [PubMed]

   Calcium influx during striatal upstates (Evans et al. 2013) [Model]

Hiratani N, Fukai T (2017) Detailed Dendritic Excitatory/Inhibitory Balance through Heterosynaptic Spike-Timing-Dependent Plasticity. J Neurosci 37:12106-12122 [Journal] [PubMed]

   Heterosynaptic Spike-Timing-Dependent Plasticity (Hiratani & Fukai 2017) [Model]

Hiratani N, Fukai T (2018) Redundancy in synaptic connections enables neurons to learn optimally. Proc Natl Acad Sci U S A 115:E6871-E6879 [Journal] [PubMed]

   A model of optimal learning with redundant synaptic connections (Hiratani & Fukai 2018) [Model]

Jedrzejewska-Szmek J, Damodaran S, Dorman DB, Blackwell KT (2017) Calcium dynamics predict direction of synaptic plasticity in striatal spiny projection neurons. Eur J Neurosci 45:1044-1056 [Journal] [PubMed]

   Striatal Spiny Projection Neuron (SPN) plasticity rule (Jedrzejewska-Szmek et al 2016) [Model]

Pedrosa V, Clopath C (2017) The role of neuromodulators in cortical plasticity. A computational perspective. Front. Synaptic Neurosci. 8:38 [Journal]

   A simple model of neuromodulatory state-dependent synaptic plasticity (Pedrosa and Clopath, 2016) [Model]

Sadeh S, Clopath C, Rotter S (2015) Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity. PLoS Comput Biol 11:e1004307 [Journal] [PubMed]

   Functional balanced networks with synaptic plasticity (Sadeh et al, 2015) [Model]

Saudargiene A, Cobb S, Graham BP (2015) A computational study on plasticity during theta cycles at Schaffer collateral synapses on CA1 pyramidal cells in the hippocampus. Hippocampus 25:208-18 [Journal] [PubMed]

   CA1 pyramidal neuron: synaptic plasticity during theta cycles (Saudargiene et al. 2015) [Model]

Solinas SMG, Edelmann E, Leßmann V, Migliore M (2019) A kinetic model for Brain-Derived Neurotrophic Factor mediated spike timing-dependent LTP. PLoS Comput Biol 15:e1006975 [Journal] [PubMed]

   STDP and BDNF in CA1 spines (Solinas et al. 2019) [Model]

Yang GR, Murray JD, Wang XJ (2016) A dendritic disinhibitory circuit mechanism for pathway-specific gating. Nat Commun 7:12815 [Journal] [PubMed]

   A dendritic disinhibitory circuit mechanism for pathway-specific gating (Yang et al. 2016) [Model]

Zachariou M, Alexander SP, Coombes S, Christodoulou C (2013) A biophysical model of endocannabinoid-mediated short term depression in hippocampal inhibition. PLoS One 8:e58926 [Journal] [PubMed]

(58 refs)