Citation Relationships



Casellato C, Antonietti A, Garrido JA, Carrillo RR, Luque NR, Ros E, Pedrocchi A, D'Angelo E (2014) Adaptive robotic control driven by a versatile spiking cerebellar network. PLoS One 9:e112265 [PubMed]

   Adaptive robotic control driven by a versatile spiking cerebellar network (Casellato et al. 2014)

References and models cited by this paper

References and models that cite this paper

Albus JS (1971) A theory of cerebellar function Math Biosci 10:25-61

Bahro M, Schreurs BG, Sunderland T, Molchan SE (1995) The effects of scopolamine, lorazepam, and glycopyrrolate on classical conditioning of the human eyeblink response. Psychopharmacology (Berl) 122:395-400 [PubMed]

Batllori R, Laramee C, Land W, Schaffer J (2011) Evolving spiking neural networks for robot control Procedia Computer Science 6:329-334

Bouganis A, Shanahan M (2010) Training a spiking neural network to control a 4-DoF robotic arm based on spike timing-dependent plasticity. IEEE International Joint Conference on Neural Networks :1-8

Boyden ES, Katoh A, Raymond JL (2004) Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Annu Rev Neurosci 27:581-609 [Journal] [PubMed]

Bracha V, Zhao L, Irwin KB, Bloedel JR (2000) The human cerebellum and associative learning: dissociation between the acquisition, retention and extinction of conditioned eyeblinks. Brain Res 860:87-94 [PubMed]

Brüderle D, Petrovici MA, Vogginger B, Ehrlich M, Pfeil T, Millner S, Grübl A, Wendt K, Müller E, Schwartz MO, de Oliveira DH, Jeltsch S, Fieres J, Schilling M, Müller P, Breitwieser O, Petkov V, Muller L, Davison AP, Krishnamurthy P, Kremkow J, Lundqvist M, Muller E, Partzsch J, Scholze S, Zühl L, Mayr C, Destexhe A, Diesmann M, Potjans TC, Lansner A, Schüffny R, Schemmel J, Meier K (2011) A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems. Biol Cybern 104:263-96 [Journal] [PubMed]

Carrillo RR, Ros E, Boucheny C, Coenen OJ (2008) A real-time spiking cerebellum model for learning robot control. Biosystems 94:18-27 [Journal] [PubMed]

Casellato C, Garrido J, Franchin C, Ferrigno G, Et_al (2013) Brain-inspired Sensorimotor Robotic Platform-Learning in Cerebellum-driven Movement Tasks through a Cerebellar Realistic Model. IJCCI 2013- Proceedings of the 5th International Joint Conference on Computational Intelligence 2013:568-573

Cheron G, Dan B, Márquez-Ruiz J (2013) Translational approach to behavioral learning: lessons from cerebellar plasticity. Neural Plast 2013:853654 [Journal] [PubMed]

Chettih SN, McDougle SD, Ruffolo LI, Medina JF (2011) Adaptive timing of motor output in the mouse: the role of movement oscillations in eyelid conditioning. Front Integr Neurosci 5:72 [Journal] [PubMed]

Clopath C, Badura A, De Zeeuw CI, Brunel N (2014) A cerebellar learning model of vestibulo-ocular reflex adaptation in wild-type and mutant mice. J Neurosci 34:7203-15 [Journal] [PubMed]

   Vestibulo-Ocular Reflex model in Matlab (Clopath at al. 2014) [Model]

D'Angelo E, Koekkoek SK, Lombardo P, Solinas S, Ros E, Garrido J, Schonewille M, De Zeeuw CI (2009) Timing in the cerebellum: oscillations and resonance in the granular layer. Neuroscience 162:805-15 [Journal] [PubMed]

D'Angelo E, Nieus T, Bezzi M, Arleo A, Coenen OJ (2005) Modeling synaptic transmission and quantifying information transfer in the granular layer of the cerebellum Computational Intelligence and Bioinspired Systems :107-114

D'Angelo E, Solinas S, Garrido J, Casellato C, Pedrocchi A, Mapelli J, Gandolfi D, Prestori F (2013) Realistic modeling of neurons and networks: towards brain simulation. Funct Neurol 28:153-66 [Journal] [PubMed]

Day JJ, Wheeler RA, Roitman MF, Carelli RM (2006) Nucleus accumbens neurons encode Pavlovian approach behaviors: evidence from an autoshaping paradigm. Eur J Neurosci 23:1341-51 [Journal] [PubMed]

de Gruijl JR, van der Smagt P, De Zeeuw CI (2009) Anticipatory grip force control using a cerebellar model. Neuroscience 162:777-86 [Journal] [PubMed]

Gamez D (2010) Information integration based predictions about the conscious states of a spiking neural network. Conscious Cogn 19:294-310 [Journal] [PubMed]

Gao Z, van Beugen BJ, De Zeeuw CI (2012) Distributed synergistic plasticity and cerebellar learning. Nat Rev Neurosci 13:619-35 [Journal] [PubMed]

Garrido JA, Luque NR, D'Angelo E, Ros E (2013) Distributed cerebellar plasticity implements adaptable gain control in a manipulation task: a closed-loop robotic simulation Front. Neural Circuits 7:159:1-20 [Journal]

   Distributed cerebellar plasticity implements adaptable gain control (Garrido et al., 2013) [Model]

Gerstner W, Kistler WM (2002) Spiking neuron models

Gerwig M, Hajjar K, Dimitrova A, Maschke M, Kolb FP, Frings M, Thilmann AF, Forsting M, Diener HC, Timmann D (2005) Timing of conditioned eyeblink responses is impaired in cerebellar patients. J Neurosci 25:3919-31 [Journal] [PubMed]

Hagras H, Pounds-cornish A, Colley M, Callaghan V, Clarke G (2004) Evolving spiking neural network controllers for autonomous robots Proceedings-ieee International Conference On Robotics And Automation 2004:4620-4626

Herreros I, Verschure PF (2013) Nucleo-olivary inhibition balances the interaction between the reactive and adaptive layers in motor control. Neural Netw 47:64-71 [Journal] [PubMed]

Hoffland BS, Bologna M, Kassavetis P, Teo JT, Rothwell JC, Yeo CH, van de Warrenburg BP, Edwards MJ (2012) Cerebellar theta burst stimulation impairs eyeblink classical conditioning. J Physiol 590:887-97 [Journal] [PubMed]

Hofstötter C, Mintz M, Verschure PF (2002) The cerebellum in action: a simulation and robotics study. Eur J Neurosci 16:1361-76 [PubMed]

Indiveri G (1999) Neuromorphic analog VLSI sensor for visual tracking: Circuits and application examples IEEE Trans Circuits and Systems II: Analog and Digital Signal Processing 46:1337-1347

Ito M (1982) Cerebellar control of the vestibulo-ocular reflex--around the flocculus hypothesis. Annu Rev Neurosci 5:275-96 [Journal] [PubMed]

Ito M (1997) Cerebellar microcomplexes. Int Rev Neurobiol 41:475-87 [PubMed]

Ito M (2011) Adaptive control of reflexes by the cerebellum. Understanding The Stretch Reflex 44:435-444

Ito M, Orlov I, Shimoyama I (1978) Reduction of the cerebellar stimulus effect on rat Deiters neurons after chemical destruction of the inferior olive. Exp Brain Res 33:143-5 [PubMed]

Ivry RB, Baldo JV (1992) Is the cerebellum involved in learning and cognition? Curr Opin Neurobiol 2:212-6 [PubMed]

Jaeger D (2003) No Parallel Fiber Volleys in the Cerebellar Cortex: Evidence from Cross-Correlation Analysis between Purkinje Cells in a Computer Model and in Recordings from Anesthetized Rats Journal of Computational Neuroscience 14:311-327 [Journal] [PubMed]

Kimpo RR, Boyden ES, Katoh A, Ke MC, Raymond JL (2005) Distinct patterns of stimulus generalization of increases and decreases in VOR gain. J Neurophysiol 94:3092-100 [Journal] [PubMed]

Lang EJ, Sugihara I, Welsh JP, Llinás R (1999) Patterns of spontaneous purkinje cell complex spike activity in the awake rat. J Neurosci 19:2728-39 [PubMed]

Lazdins E, Fidjeland AK, Gamez D, Shanahan MP (2011) ispike: A spiking neural interface for the icub robot. Proceedings of the International workshop on bio-inspired robots

Lenz A, Anderson SR, Pipe AG, Melhuish C, Dean P, Porrill J (2009) Cerebellar-inspired adaptive control of a robot eye actuated by pneumatic artificial muscles. IEEE Trans Syst Man Cybern B Cybern 39:1420-33 [Journal] [PubMed]

Lepora NF, Porrill J, Yeo CH, Dean P (2010) Sensory prediction or motor control? Application of marr-albus type models of cerebellar function to classical conditioning. Front Comput Neurosci 4:140 [Journal] [PubMed]

Lu J, Liu H, Zhang M, Wang D, Cao Y, Ma Q, Rong D, Wang X, Buckner RL, Li K (2011) Focal pontine lesions provide evidence that intrinsic functional connectivity reflects polysynaptic anatomical pathways. J Neurosci 31:15065-71 [Journal] [PubMed]

Luque NR, Garrido JA, Carrillo RR, Coenen OJ, Ros E (2011) Cerebellarlike corrective model inference engine for manipulation tasks. IEEE Trans Syst Man Cybern B Cybern 41:1299-312 [Journal] [PubMed]

Luque NR, Garrido JA, Carrillo RR, Coenen OJ, Ros E (2011) Cerebellar input configuration toward object model abstraction in manipulation tasks. IEEE Trans Neural Netw 22:1321-8 [Journal] [PubMed]

Luque NR, Garrido JA, Carrillo RR, Tolu S, Ros E (2011) Adaptive cerebellar spiking model embedded in the control loop: context switching and robustness against noise. Int J Neural Syst 21:385-401 [Journal] [PubMed]

Luque NR, Garrido JA, Ralli J, Laredo JJ, Ros E (2012) From sensors to spikes: evolving receptive fields to enhance sensorimotor information in a robot-arm. Int J Neural Syst 22:1250013-33

Maass W (1997) Networks of spiking neurons: The third generation of neural network models Neural Networks 10:1659-1671

Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437-70 [PubMed]

Masuda N, Amari S (2008) A computational study of synaptic mechanisms of partial memory transfer in cerebellar vestibulo-ocular-reflex learning. J Comput Neurosci 24:137-56 [Journal] [PubMed]

Mathy A, Ho SS, Davie JT, Duguid IC, Clark BA, Häusser M (2009) Encoding of oscillations by axonal bursts in inferior olive neurons. Neuron 62:388-99 [Journal] [PubMed]

Mauk MD, Steinmetz JE, Thompson RF (1986) Classical conditioning using stimulation of the inferior olive as the unconditioned stimulus. Proc Natl Acad Sci U S A 83:5349-53 [PubMed]

McKinstry JL, Edelman GM, Krichmar JL (2006) A cerebellar model for predictive motor control tested in a brain-based device. Proc Natl Acad Sci U S A 103:3387-92 [Journal] [PubMed]

Medina JF, Garcia KS, Mauk MD (2001) A mechanism for savings in the cerebellum. J Neurosci 21:4081-9 [PubMed]

Medina JF, Nores WL, Ohyama T, Mauk MD (2000) Mechanisms of cerebellar learning suggested by eyelid conditioning. Curr Opin Neurobiol 10:717-24 [PubMed]

Naveros F, Luque NR, Garrido JA, Carrillo RR, Ros E (2013) CPU-GPU hybrid platform for efficient spiking neural-network simulation Bmc Neuroscience 14:328

Nolfi S, Floreano D (2002) Synthesis of autonomous robots through evolution. Trends Cogn Sci 6:31-37 [PubMed]

Porrill J, Dean P (2007) Cerebellar motor learning: when is cortical plasticity not enough? PLoS Comput Biol 3:1935-50 [Journal] [PubMed]

Rasmussen A, Jirenhed DA, Zucca R, Johansson F, Svensson P, Hesslow G (2013) Number of spikes in climbing fibers determines the direction of cerebellar learning. J Neurosci 33:13436-40 [Journal] [PubMed]

Ros E, Carrillo R, Ortigosa EM, Barbour B, Agís R (2006) Event-driven simulation scheme for spiking neural networks using lookup tables to characterize neuronal dynamics. Neural Comput 18:2959-93 [Journal] [PubMed]

Sarlegna FR, Malfait N, Bringoux L, Bourdin C, Vercher JL (2010) Force-field adaptation without proprioception: can vision be used to model limb dynamics? Neuropsychologia 48:60-7 [Journal] [PubMed]

Scheidt RA, Reinkensmeyer DJ, Conditt MA, Rymer WZ, Mussa-Ivaldi FA (2000) Persistence of motor adaptation during constrained, multi-joint, arm movements. J Neurophysiol 84:853-62 [Journal] [PubMed]

Schemmel J, Bruderle D, Meier K, Ostendorf B (2007) Modeling Synaptic Plasticity within Networks of Highly Accelerated I&F Neurons IEEE International Symposium on Circuits and Systems 2007:3367-3370

Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208-24 [PubMed]

Sharp T, Plana LA, Galluppi F, Furber S (2011) Event-Driven Simulation of Arbitrary Spiking Neural Networks on SpiNNaker Neural Information Processing 2011:424-430

Shibuki K, Gomi H, Chen L, Bao S, Kim JJ, Wakatsuki H, Fujisaki T, Fujimoto K, Katoh A, Ikeda T, Chen C, Thompson RF, Itohara S (1996) Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron 16:587-99 [PubMed]

Simpson JI, Wylie DR, De_Zeeuw CI (1996) On climbing fiber signals and their consequence(s) Behav Brain Sci 19:384-398

Solinas S, Nieus T, D'Angelo E (2010) A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties. Front Cell Neurosci 4:12 [Journal] [PubMed]

Spoelstra J, Arbib MA (2001) Cerebellar microcomplexes and the modulation of motor pattern generators. Autonomous Robots 11:273-278

Spoelstra J, Schweighofer N, Arbib MA (2000) Cerebellar learning of accurate predictive control for fast-reaching movements. Biol Cybern 82:321-33 [Journal] [PubMed]

Stone LS, Lisberger SG (1990) Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. I. Simple spikes. J Neurophysiol 63:1241-61 [Journal] [PubMed]

Thompson RF, Steinmetz JE (2009) The role of the cerebellum in classical conditioning of discrete behavioral responses. Neuroscience 162:732-55 [Journal] [PubMed]

Trhan P (2010) The application of spiking neural networks in autonomous robot control Computing Informatics

Tyrrell T, Willshaw D (1992) Cerebellar cortex: its simulation and the relevance of Marr's theory. Philos Trans R Soc Lond B Biol Sci 336:239-57 [Journal] [PubMed]

Van_der_smagt P (2000) Benchmarking cerebellar control Rob Auton Syst 32:237-251

Verschure P, Althaus P (1999) The study of learning and problem solving using artificial devices Synthetic Epistemology Bildung Und Erziehung 52:317-333

Vijayakumar S, D'Souza A, Schaal S (2005) Incremental online learning in high dimensions. Neural Comput 17:2602-34 [Journal] [PubMed]

Voegtlin T, Verschure PF (1999) What can robots tell us about brains? A synthetic approach towards the study of learning and problem solving. Rev Neurosci 10:291-310 [PubMed]

Welsh JP, Harvey JA (1991) Pavlovian conditioning in the rabbit during inactivation of the interpositus nucleus. J Physiol 444:459-80 [PubMed]

Wolpert DM, Miall RC (1996) Forward Models for Physiological Motor Control. Neural Netw 9:1265-1279 [PubMed]

Wu Y, Collier L, Qin W, Creasey G, Bauman WA, Jarvis J, Cardozo C (2013) Electrical stimulation modulates Wnt signaling and regulates genes for the motor endplate and calcium binding in muscle of rats with spinal cord transection. BMC Neurosci 14:81 [Journal] [PubMed]

Yamamoto K, Kawato M, Kotosaka S, Kitazawa S (2007) Encoding of movement dynamics by Purkinje cell simple spike activity during fast arm movements under resistive and assistive force fields. J Neurophysiol 97:1588-99 [Journal] [PubMed]

Yamazaki T, Igarashi J (2013) Realtime cerebellum: a large-scale spiking network model of the cerebellum that runs in realtime using a graphics processing unit. Neural Netw 47:103-11 [Journal] [PubMed]

Yamazaki T, Nagao S (2012) A computational mechanism for unified gain and timing control in the cerebellum. PLoS One 7:e33319 [Journal] [PubMed]

   Cerebellar gain and timing control model (Yamazaki & Tanaka 2007)(Yamazaki & Nagao 2012) [Model]

Yamazaki T, Tanaka S (2007) The cerebellum as a liquid state machine. Neural Netw 20:290-7 [Journal] [PubMed]

Geminiani A, Casellato C, Antonietti A, D'Angelo E, Pedrocchi A (2018) A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies. Int J Neural Syst 28:1750017 [Journal] [PubMed]

Vannucci L, Falotico E, Laschi C (2017) Proprioceptive Feedback through a Neuromorphic Muscle Spindle Model. Front Neurosci 11:341 [Journal] [PubMed]

   Neuromorphic muscle spindle model (Vannucci et al 2017) [Model]

(83 refs)