Citation Relationships



Kiang NYS, Watanabe T, Thomas C, Clark LF (1965) Discharge Patterns Of Single Fibers In The Cats Auditory Nerve

References and models cited by this paper

References and models that cite this paper

Bruce IC, White MW, Irlicht LS, O'Leary SJ, Dynes S, Javel E, Clark GM (1999) A stochastic model of the electrically stimulated auditory nerve: single-pulse response. IEEE Trans Biomed Eng 46:617-29 [PubMed]

   Cochlear implant models (Bruce et al. 1999a, b, c, 2000) [Model]

Cariani PA (2002) Neural timing nets. Neural Netw 14:737-53

Heinz MG, Colburn HS, Carney LH (2001) Evaluating auditory performance limits: i. one-parameter discrimination using a computational model for the auditory nerve. Neural Comput 13:2273-316 [Journal] [PubMed]

   Auditory nerve model with linear tuning (Heinz et al 2001) [Model]

Heinz MG, Colburn HS, Carney LH (2001) Rate and timing cues associated with the cochlear amplifier: level discrimination based on monaural cross-frequency coincidence detection. J Acoust Soc Am 110:2065-84 [PubMed]

   Integrate and fire model code for spike-based coincidence-detection (Heinz et al. 2001, others) [Model]

Jackson BS, Carney LH (2005) The spontaneous-rate histogram of the auditory nerve can be explained by only two or three spontaneous rates and long-range dependence. J Assoc Res Otolaryngol 6:148-59 [Journal] [PubMed]

   Auditory nerve spontaneous rate histograms (Jackson and Carney 2005) [Model]

Kalluri S, Delgutte B (2003) Mathematical models of cochlear nucleus onset neurons: I. Point neuron with many weak synaptic inputs. J Comput Neurosci 14:71-90 [PubMed]

Kuhlmann L, Burkitt AN, Paolini A, Clark GM (2002) Summation of spatiotemporal input patterns in leaky integrate-and-fire neurons: application to neurons in the cochlear nucleus receiving converging auditory nerve fiber input. J Comput Neurosci 12:55-73 [PubMed]

Lin X, Hant J (2001) Computer-simulation studies on roles of potassium currents in neurotransmission of the auditory nerve. Hear Res 152:90-9 [PubMed]

Nelson PC, Carney LH (2007) Neural rate and timing cues for detection and discrimination of amplitude-modulated tones in the awake rabbit inferior colliculus. J Neurophysiol 97:522-39 [Journal] [PubMed]

Peterson AJ, Heil P (2018) A simple model of the inner-hair-cell ribbon synapse accounts for mammalian auditory-nerve-fiber spontaneous spike times. Hear Res 363:1-27 [Journal] [PubMed]

Remme MWH, Rinzel J, Schreiber S (2018) Function and energy consumption constrain neuronal biophysics in a canonical computation: Coincidence detection. PLoS Comput Biol 14:e1006612 [Journal] [PubMed]

   Function and energy constrain neuronal biophysics in coincidence detection (Remme et al 2018) [Model]

Rowat P (2007) Interspike interval statistics in the stochastic Hodgkin-Huxley model: coexistence of gamma frequency bursts and highly irregular firing. Neural Comput 19:1215-50 [Journal] [PubMed]

Tan Q, Carney LH (2003) A phenomenological model for the responses of auditory-nerve fibers. II. Nonlinear tuning with a frequency glide. J Acoust Soc Am 114:2007-20 [PubMed]

   Auditory nerve response model (Tan, Carney 2003) [Model]

Winslow JL (1990) Analysis and numerical solution of the dendrite equation with synapses applied to cochlear neurons. Prog Neurobiol 34:91-105 [PubMed]

Zhang X, Carney LH (2005) Response properties of an integrate-and-fire model that receives subthreshold inputs. Neural Comput 17:2571-601 [Journal] [PubMed]

   Response properties of an integrate and fire model (Zhang and Carney 2005) [Model]

Zhang X, Heinz MG, Bruce IC, Carney LH (2001) A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression. J Acoust Soc Am 109:648-70 [PubMed]

   Auditory nerve response model (Zhang et al 2001) [Model]

Zhou Y, Carney LH, Colburn HS (2005) A model for interaural time difference sensitivity in the medial superior olive: interaction of excitatory and inhibitory synaptic inputs, channel dynamics, and cellular morphology. J Neurosci 25:3046-58 [Journal] [PubMed]

   A model for interaural time difference sensitivity in the medial superior olive (Zhou et al 2005) [Model]

Zilany MS, Bruce IC (2006) Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery. J Acoust Soc Am 120:1446-66 [PubMed]

   Cat auditory nerve model (Zilany and Bruce 2006, 2007) [Model]

Zilany MS, Bruce IC, Nelson PC, Carney LH (2009) A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics. J Acoust Soc Am 126:2390-412 [Journal] [PubMed]

   Long-term adaptation with power-law dynamics (Zilany et al. 2009) [Model]
   Cochlea: inner ear models in Python (Zilany et al 2009, 2014; Holmberg M 2007) [Model]

(19 refs)