Citation Relationships



Gold JI, Bear MF (1994) A model of dendritic spine Ca2+ concentration exploring possible bases for a sliding synaptic modification threshold. Proc Natl Acad Sci U S A 91:3941-5 [PubMed]

References and models cited by this paper

References and models that cite this paper

Badoual M, Zou Q, Davison AP, Rudolph M, Bal T, Fr├ęgnac Y, Destexhe A (2006) Biophysical and phenomenological models of multiple spike interactions in spike-timing dependent plasticity. Int J Neural Syst 16:79-97 [Journal] [PubMed]

   Biophysical and phenomenological models of spike-timing dependent plasticity (Badoual et al. 2006) [Model]

Manninen T, Hituri K, Kotaleski JH, Blackwell KT, Linne ML (2010) Postsynaptic signal transduction models for long-term potentiation and depression. Front Comput Neurosci 4:152 [Journal] [PubMed]

Migliore M, Lansky P (1999) Long-term potentiation and depression induced by a stochastic conditioning of a model synapse. Biophys J 77:1234-43 [Journal] [PubMed]

   Stochastic LTP/LTD conditioning of a synapse (Migliore and Lansky 1999) [Model]

Narayanan R, Johnston D (2010) The h current is a candidate mechanism for regulating the sliding modification threshold in a BCM-like synaptic learning rule. J Neurophysiol 104:1020-33 [Journal] [PubMed]

   BCM-like synaptic plasticity with conductance-based models (Narayanan Johnston, 2010) [Model]

O'Donnell C, Nolan MF, van Rossum MC (2011) Dendritic spine dynamics regulate the long-term stability of synaptic plasticity. J Neurosci 31:16142-56 [Journal] [PubMed]

   CA1 pyramidal neuron dendritic spine with plasticity (O`Donnell et al. 2011) [Model]

Rusakov DA, Stewart MG, Korogod SM (1996) Branching of active dendritic spines as a mechanism for controlling synaptic efficacy. Neuroscience 75:315-23 [PubMed]

   Spine fusion and branching effects synaptic response (Rusakov et al 1996, 1997) [Model]

(6 refs)