Citation Relationships



Rudy B, McBain CJ (2001) Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Trends Neurosci 24:517-26 [PubMed]

References and models cited by this paper

References and models that cite this paper

Akemann W, Knöpfel T (2006) Interaction of Kv3 potassium channels and resurgent sodium current influences the rate of spontaneous firing of Purkinje neurons. J Neurosci 26:4602-12 [Journal] [PubMed]

   Cerebellar purkinje cell: interacting Kv3 and Na currents influence firing (Akemann, Knopfel 2006) [Model]

Desai R, Kronengold J, Mei J, Forman SA, Kaczmarek LK (2008) Protein kinase C modulates inactivation of Kv3.3 channels. J Biol Chem 283:22283-94 [Journal] [PubMed]

Doischer D, Hosp JA, Yanagawa Y, Obata K, Jonas P, Vida I, Bartos M (2008) Postnatal differentiation of basket cells from slow to fast signaling devices. J Neurosci 28:12956-68 [Journal] [PubMed]

Fernandez FR, Mehaffey WH, Molineux ML, Turner RW (2005) High-threshold K+ current increases gain by offsetting a frequency-dependent increase in low-threshold K+ current. J Neurosci 25:363-71 [Journal] [PubMed]

   Pyramidal neurons: IKHT offsets activation of IKLT to increase gain (Fernandez et al 2005) [Model]

Golomb D, Donner K, Shacham L, Shlosberg D, Amitai Y, Hansel D (2007) Mechanisms of firing patterns in fast-spiking cortical interneurons. PLoS Comput Biol 3:e156 [Journal] [PubMed]

   Fast-spiking cortical interneuron (Golomb et al. 2007) [Model]

Grau-Serrat V, Carr CE, Simon JZ (2003) Modeling coincidence detection in nucleus laminaris. Biol Cybern 89:388-96 [Journal] [PubMed]

Gu N, Vervaeke K, Storm JF (2007) BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells. J Physiol 580:859-82 [Journal] [PubMed]

Huang CW, Tsai JJ, Huang CC, Wu SN (2009) Experimental and simulation studies on the mechanisms of levetiracetam-mediated inhibition of delayed-rectifier potassium current (KV3.1): contribution to the firing of action potentials. J Physiol Pharmacol 60:37-47 [Journal] [PubMed]

   Simulation studies on mechanisms of levetiracetam-mediated inhibition of IK(DR) (Huang et al. 2009) [Model]

Jaffe DB, Brenner R (2018) A computational model for how the fast afterhyperpolarization paradoxically increases gain in regularly firing neurons. J Neurophysiol 119:1506-1520 [Journal] [PubMed]

   Paradoxical effect of fAHP amplitude on gain in dentate gyrus granule cells (Jaffe & Brenner 2018) [Model]

Khaliq ZM, Gouwens NW, Raman IM (2003) The contribution of resurgent sodium current to high-frequency firing in Purkinje neurons: an experimental and modeling study. J Neurosci 23:4899-912 [PubMed]

   Cerebellar Purkinje Cell: resurgent Na current and high frequency firing (Khaliq et al 2003) [Model]

Lawrence JJ, Saraga F, Churchill JF, Statland JM, Travis KE, Skinner FK, McBain CJ (2006) Somatodendritic Kv7/KCNQ/M channels control interspike interval in hippocampal interneurons. J Neurosci 26:12325-38 [Journal] [PubMed]

   O-LM interneuron model (Lawrence et al. 2006) [Model]

Lien CC, Martina M, Schultz JH, Ehmke H, Jonas P (2002) Gating, modulation and subunit composition of voltage-gated K(+) channels in dendritic inhibitory interneurones of rat hippocampus. J Physiol 538:405-19 [PubMed]

   CA1 interneuron: K currents (Lien et al 2002) [Model]

Lin MW, Wang YJ, Liu SI, Lin AA, Lo YC, Wu SN (2008) Characterization of aconitine-induced block of delayed rectifier K+ current in differentiated NG108-15 neuronal cells. Neuropharmacology 54:912-23 [Journal] [PubMed]

   Properties of aconitine-induced block of KDR current in NG108-15 neurons (Lin et al. 2008) [Model]

Masurkar AV, Chen WR (2011) Potassium currents of olfactory bulb juxtaglomerular cells: characterization, simulation, and implications for plateau potential firing. Neuroscience 192:247-62 [Journal] [PubMed]

   Calcium and potassium currents of olfactory bulb juxtaglomerular cells (Masurkar and Chen 2011) [Model]

Mercer JN, Chan CS, Tkatch T, Held J, Surmeier DJ (2007) Nav1.6 sodium channels are critical to pacemaking and fast spiking in globus pallidus neurons. J Neurosci 27:13552-66 [Journal] [PubMed]

   Nav1.6 sodium channel model in globus pallidus neurons (Mercer et al. 2007) [Model]

Nörenberg A, Hu H, Vida I, Bartos M, Jonas P (2010) Distinct nonuniform cable properties optimize rapid and efficient activation of fast-spiking GABAergic interneurons. Proc Natl Acad Sci U S A 107:894-9 [Journal] [PubMed]

   Detailed passive cable model of Dentate Gyrus Basket Cells (Norenberg et al. 2010) [Model]

Ovsepian SV, Steuber V, Le Berre M, O'Hara L, O'Leary VB, Dolly JO (2013) A defined heteromeric KV1 channel stabilizes the intrinsic pacemaking and regulates the output of deep cerebellar nuclear neurons to thalamic targets. J Physiol 591:1771-91 [Journal] [PubMed]

   KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013) [Model]

Shu Y, Yu Y, Yang J, McCormick DA (2007) Selective control of cortical axonal spikes by a slowly inactivating K+ current. Proc Natl Acad Sci U S A 104:11453-8 [Journal] [PubMed]

   Selective control of cortical axonal spikes by a slowly inactivating K+ current (Shu et al. 2007) [Model]

Vida I, Bartos M, Jonas P (2006) Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron 49:107-17 [Journal] [PubMed]

Wu SN, Chen BS, Lin MW, Liu YC (2008) Contribution of slowly inactivating potassium current to delayed firing of action potentials in NG108-15 neuronal cells: experimental and theoretical studies. J Theor Biol 252:711-21 [Journal] [PubMed]

   Effect of slowly inactivating IKdr to delayed firing of action potentials (Wu et al. 2008) [Model]

(20 refs)