Citation Relationships



Whittington JCR, Bogacz R (2017) An Approximation of the Error Backpropagation Algorithm in a Predictive Coding Network with Local Hebbian Synaptic Plasticity. Neural Comput 29:1229-1262 [PubMed]

   Supervised learning with predictive coding (Whittington & Bogacz 2017)

References and models cited by this paper

References and models that cite this paper

Ackley DH, Hinton GE, Sejnowski TJ (1985) A learning algorithm for Bolzmann machines. Cognitive Sci 9:147-69

Balduzzi D,Vanchinathan H,Buhmann J (2014) Kickback cuts back- prop's red-tape: biologically plausible credit assignment in neural networks arXiv:1411.6191v1

Barto AG, Jordan MI (1987) Gradient following without back-propagation in layered networks Proc 1st IEEE Ann Conf Neural Networks, Caudill M:Butler C, ed. pp.629

Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ (2012) Canonical microcircuits for predictive coding. Neuron 76:695-711 [Journal] [PubMed]

Bell AH, Summerfield C, Morin EL, Malecek NJ, Ungerleider LG (2016) Encoding of Stimulus Probability in Macaque Inferior Temporal Cortex. Curr Biol 26:2280-90 [Journal] [PubMed]

Bengio Y (2014) How auto-encoders could provide credit assignment in deep networks via target propagation arXiv:1407.7906

Bengio Y,Fischer A (2015) Early inference in energy-based models approxi- mates back-propagation arXiv:1510.02777

Bengio Y,Lee DH,Bornschein J,Lin Z (2015) Towards biologically plausible deep learning arXiv:1502.04156

Bogacz R (2017) A tutorial on the free-energy framework for modelling perception and learning Journal of Mathematical Psychology [Journal]

Bogacz R, Martin Moraud E, Abdi A, Magill PJ, Baufreton J (2016) Properties of Neurons in External Globus Pallidus Can Support Optimal Action Selection. PLoS Comput Biol 12:e1005004 [Journal] [PubMed]

Bogacz R,Markowska-Kaczmar U,Kozik A (1999) Blinking artefact recognition in eeg signal using artificial neural network Proceedings of 4th Conference on Neural Networks and Their Applications, Zakopane (Poland) :502-507

Brown MW, Aggleton JP (2001) Recognition memory: what are the roles of the perirhinal cortex and hippocampus? Nat Rev Neurosci 2:51-61 [Journal] [PubMed]

Chauvin Y, Rumelhart DE (1995) Back propagation: Theory, architectures, and applications, Chauvin Y:Rumelhart DE, ed.

Crick F (1989) The recent excitement about neural networks. Nature 337:129-32 [Journal] [PubMed]

Dayan P, Hinton GE, Neal RM, Zemel RS (1995) The Helmholtz machine. Neural Comput 7:889-904 [PubMed]

De_Sa VR,Ballard DH (1998) Perceptual learning from cross-modal feedback Psychology of Learning and Motivation 36:309-351

Feldman H, Friston KJ (2010) Attention, uncertainty, and free-energy. Front Hum Neurosci 4:215 [Journal] [PubMed]

Fiser A, Mahringer D, Oyibo HK, Petersen AV, Leinweber M, Keller GB (2016) Experience-dependent spatial expectations in mouse visual cortex. Nat Neurosci 19:1658-1664 [Journal] [PubMed]

Friston K (2003) Learning and inference in the brain. Neural Netw 16:1325-52 [Journal] [PubMed]

Friston K (2005) A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci 360:815-36 [Journal] [PubMed]

Friston K (2010) The free-energy principle: a unified brain theory? Nat Rev Neurosci 11:127-38 [Journal] [PubMed]

Friston KJ, Daunizeau J, Kilner J, Kiebel SJ (2010) Action and behavior: a free-energy formulation. Biol Cybern 102:227-60 [Journal] [PubMed]

Hinton G,Deng L,Yu D,Dahl G,Mohamed A,Jaitly, N,Senior A,Van- houcke V,Nguyen P,Sainath T,Kin (2012) Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups Signal Processing Magazine 29:82-97

Hinton GE, Mcclelland JL (1988) Learning representations by recirculation Neural Information Processing Systems, Anderson DZ, ed. pp.358

Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18:1527-54 [Journal] [PubMed]

Hyvarinen A (1999) Regression using independent component analysis, and its connection to multi-layer perceptrons Proceedings of the 9th International Conference on Artificial Neural Networks, Edinburgh :491-496

Kingma D,Ba J (2014) Adam: A method for stochastic optimization arXiv:1412.6980

Krizhevsky A,Sutskever I,Hinton GE (2012) Imagenet classification with deep convolutional neural networks Advances in Neural Information Processing Systems, Pereira F:Burges C:Bottou L:Weinberger K, ed. pp.1097

Larochelle H,Bengio Y (2008) Towards biologically plausible deep learning Proceedings of the 25th International Conference on Machine Learning :536-543

Lecun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation applied to handwritten zip code recognition Neural Comput 1:541-551

Li L, Miller EK, Desimone R (1993) The representation of stimulus familiarity in anterior inferior temporal cortex. J Neurophysiol 69:1918-29 [Journal] [PubMed]

Lillicrap TP,Cownden D,Tweed DB,Akerman CJ (2014) Random feedback weights support learning in deep neural networks arXiv:1411.0247

Mazzoni P, Andersen RA, Jordan MI (1991) A more biologically plausible learning rule for neural networks. Proc Natl Acad Sci U S A 88:4433-7 [PubMed]

McClelland JL, McNaughton BL, O'Reilly RC (1995) Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev 102:419-457 [Journal] [PubMed]

O'Reilly RC (1998) Biologically plausible error-driven learning using local activation differences: The generalized recirculation algorithm. Neural Computation 8:895-938

O'Reilly RC, Munakata Y (2000) Computational explorations in cognitive neuroscience

Plaut DC, McClelland JL, Seidenberg MS, Patterson K (1996) Understanding normal and impaired word reading: computational principles in quasi-regular domains. Psychol Rev 103:56-115 [PubMed]

Rao RP, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci 2:79-87 [Journal] [PubMed]

Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533-536

Rumelhart DE,Durbin R,Golden R,Chauvin Y (1995) Backpropagation: The basic theory Backpropagation: Theory, Architectures and Applications :1-34

Scellier B,Bengio Y (2016) Towards a biologically plausible backprop arXiv:1602.05179

Seidenberg MS, McClelland JL (1989) A distributed, developmental model of word recognition and naming. Psychol Rev 96:523-68 [PubMed]

Seung HS (2003) Learning in spiking neural networks by reinforcement of stochastic synaptic transmission. Neuron 40:1063-73 [PubMed]

Spratling MW (2008) Reconciling predictive coding and biased competition models of cortical function. Front Comput Neurosci 2:4 [Journal] [PubMed]

Srivastava N,Salakhutdinov R (2012) Multimodal learning with deep boltzmann machines NIPS

Summerfield C, Egner T, Greene M, Koechlin E, Mangels J, Hirsch J (2006) Predictive codes for forthcoming perception in the frontal cortex. Science 314:1311-4 [Journal] [PubMed]

Summerfield C, Trittschuh EH, Monti JM, Mesulam MM, Egner T (2008) Neural repetition suppression reflects fulfilled perceptual expectations. Nat Neurosci 11:1004-6 [Journal] [PubMed]

Unnikrishnan KP, Venugopal KP (1994) Alopex: A correlation-based learning algorithm for feedforward and recurrent neural networks Neural Comput 6:469-490

Werfel J, Xie X, Seung HS (2005) Learning curves for stochastic gradient descent in linear feedforward networks. Neural Comput 17:2699-718 [Journal] [PubMed]

Whittington C,Bogacz R (2015) Learning in cortical networks through error back-propagation bioRxiv :035451

Williams RJ (1992) Simple statistical gradient-following algorithms for connectionist reinforcement learning Mach Learn 8:229-256

Zmarz P, Keller GB (2016) Mismatch Receptive Fields in Mouse Visual Cortex. Neuron 92:766-772 [Journal] [PubMed]

(52 refs)