Citation Relationships



Miceli S, Ness TV, Einevoll GT, Schubert D (2017) Impedance Spectrum in Cortical Tissue: Implications for Propagation of LFP Signals on the Microscopic Level Eneuro 4:1-15

   Impedance spectrum in cortical tissue: implications for LFP signal propagation (Miceli et al. 2017)

References and models cited by this paper

References and models that cite this paper

Andersen RA, Musallam S, Pesaran B (2004) Selecting the signals for a brain-machine interface. Curr Opin Neurobiol 14:720-6 [Journal] [PubMed]

Bechhoefer J (2011) Kramers-Kronig, Bode, and the meaning of zero Am J Phys 79:1053

Bedard C, Destexhe A (2009) Macroscopic models of local field potentials and the apparent 1-f noise in brain activity. Biophys J 96:2589-603 [PubMed]

Bedard C, Kroger H, Destexhe A (2006) Model of low-pass filtering of local field potentials in brain tissue. Phys Rev E Stat Nonlin Soft Matter Phys 73:051911 [Journal] [PubMed]

Buzsaki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7:446-51 [PubMed]

Buzsaki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13:407-20 [PubMed]

Carnevale NT, Hines ML (2006) The NEURON Book

Clark GM (2004) Phase retrieval from modulus using homeomorphic signal processing and the complex cepstrum: an algorithm for lightning protection systems

Dowrick T, Blochet C, Holder D (2015) In vivo bioimpedance measurement of healthy and ischaemic rat brain: implications for stroke imaging using electrical impedance tomography. Physiol Meas 36:1273-82 [Journal] [PubMed]

Einevoll GT, Kayser C, Logothetis NK, Panzeri S (2013) Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat Rev Neurosci 14:770-85 [PubMed]

Einevoll GT,Linden H,Tetzlaff T,Leski S,Pettersen KH (2013) Local field potentials – biophysical origin and analysis Principles of Neural Coding, Quiroga RQ:Panzeri S, ed. pp.37

Elbohouty M (2013) Electrical conductivity of brain cortex slices in seizing and non-seizing states

Gabriel C, Peyman A, Grant EH (2009) Electrical conductivity of tissue at frequencies below 1 MHz. Phys Med Biol 54:4863-78 [Journal] [PubMed]

Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251-69 [PubMed]

Gilja V, Moore T (2007) Electrical signals propagate unbiased in cortex. Neuron 55:684-6 [Journal] [PubMed]

Gomes JM, Bédard C, Valtcheva S, Nelson M, Khokhlova V, Pouget P, Venance L, Bal T, Destexhe (2016) Intracellular Impedance Measurements Reveal Non-ohmic Properties of the Extracellular Medium around Neurons. Biophys J 110:234-46 [Journal] [PubMed]

Goto T, Hatanaka R, Ogawa T, Sumiyoshi A, Riera J, Kawashima R (2010) An evaluation of the conductivity profile in the somatosensory barrel cortex of Wistar rats. J Neurophysiol 104:3388-412 [PubMed]

Halnes G, Mäki-Marttunen T, Keller D, Pettersen KH, Andreassen OA, Einevoll GT (2016) Effect of Ionic Diffusion on Extracellular Potentials in Neural Tissue PLoS Comput Biol 12:e1005193 [Journal] [PubMed]

   Effect of ionic diffusion on extracellular potentials (Halnes et al 2016) [Model]

Hämäläinen M,Hari R,Ilmoniemi RJ,Knuutila J,Lounasmaa OV (1993) Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain Rev. Mod. Phys. 65:413-497

Hay E, Hill S, Schurmann F, Markram H, Segev I (2011) Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS Comput Biol 7:e1002107 [Journal] [PubMed]

   Layer V pyramidal cell model with reduced morphology (Mäki-Marttunen et al 2017) [Model]
   Cortical Layer 5b pyr. cell with [Na+]i mechanisms, from Hay et al 2011 (Zylbertal et al 2017) [Model]
   L5b PC model constrained for BAC firing and perisomatic current step firing (Hay et al., 2011) [Model]

Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179-209 [PubMed]

Hines ML, Davison AP, Muller E (2009) NEURON and Python Frontiers in Neuroinformatics 3:1 [Journal] [PubMed]

   NEURON + Python (Hines et al. 2009) [Model]

Holt GR, Koch C (1999) Electrical interactions via the extracellular potential near cell bodies. J Comput Neurosci 6:169-84 [Journal] [PubMed]

   Extracellular Action Potential Simulations (Gold et al 2007) [Model]

Ishai PB,Talary MS,Caduff A,Levy E,Feldman Y (2013) Electrode polarization in dielectric measurements: a review Meas Sci Technol 24:102001

Jackson JD (1998) Classical Electrodynamics

Land PW, Kandler K (2002) Somatotopic organization of rat thalamocortical slices. J Neurosci Methods 119:15-21 [PubMed]

Langtangen HP (2012) A primer on scientific programming with Python

Lindén H, Hagen E, Leski S, Norheim ES, Pettersen KH, Einevoll GT (2013) LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons. Front Neuroinform 7:41 [Journal] [PubMed]

Linden H, Pettersen KH, Einevoll GT (2010) Intrinsic dendritic filtering gives low-pass power spectra of local field potentials. J Comput Neurosci 29:423-44 [PubMed]

Logothetis NK, Kayser C, Oeltermann A (2007) In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation. Neuron 55:809-23 [PubMed]

Martinsen ØG,Grimnes S (2008) Bioimpedance and bioelectricity basics

Meffin H, Tahayori B, Grayden DB, Burkitt AN (2012) Modeling extracellular electrical stimulation: I. Derivation and interpretation of neurite equations. J Neural Eng 9:065005 [PubMed]

Meffin H, Tahayori B, Sergeev EN, Mareels IM, Grayden DB, Burkitt AN (2014) Modelling extracellular electrical stimulation: part 3. Derivation and interpretation of neural tissue equations. J Neural Eng 11:065004 [Journal] [PubMed]

Mirtaheri P, Grimnes S, Martinsen OG (2005) Electrode polarization impedance in weak NaCl aqueous solutions. IEEE Trans Biomed Eng 52:2093-9 [Journal] [PubMed]

Nelson MJ, Bosch C, Venance L, Pouget P (2013) Microscale inhomogeneity of brain tissue distorts electrical signal propagation. J Neurosci 33:2821-7 [Journal] [PubMed]

Nelson MJ, Pouget P (2010) Do electrode properties create a problem in interpreting local field potential recordings? J Neurophysiol 103:2315-7 [PubMed]

Nelson MJ, Pouget P, Nilsen EA, Patten CD, Schall JD (2008) Review of signal distortion through metal microelectrode recording circuits and filters. J Neurosci Methods 169:141-57 [Journal] [PubMed]

Ness TV, Chintaluri C, Potworowski J, Leski S, Glabska H, Wójcik DK, Einevoll GT (2015) Modelling and Analysis of Electrical Potentials Recorded in Microelectrode Arrays (MEAs). Neuroinformatics 13:403-26 [Journal] [PubMed]

Ness TV, Remme MW, Einevoll GT (2016) Active subthreshold dendritic conductances shape the local field potential. J Physiol 594:3809-25 [Journal] [PubMed]

Nicholson C, Freeman JA (1975) Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. J Neurophysiol 38:356-68 [Journal] [PubMed]

Nicholson C, Sykova E (1998) Extracellular space structure revealed by diffusion analysis. Trends Neurosci 21:207-15 [PubMed]

Nunez PL, Srinivasan R (2006) Electric fields of the brain: the neurophysics of EEG 2nd ed.

Orfanidis SJ () Electromagnetic waves and antennas

Peters MJ, Hendriks M, Stinstra JG (2001) The passive DC conductivity of human tissues described by cells in solution. Bioelectrochemistry 53:155-60 [PubMed]

Pettersen KH, Linden H, Dale AM, Einevoll GT (2012) Extracellular spikes and current-source density Handbook of neural activity measurement, Brette R:Destexhe A, ed.

Pfurtscheller G, Cooper R (1975) Frequency dependence of the transmission of the EEG from cortex to scalp. Electroencephalogr Clin Neurophysiol 38:93-6 [PubMed]

Plonsey R, Heppner DB (1967) Considerations of quasi-stationarity in electrophysiological systems. Bull Math Biophys 29:657-64 [PubMed]

RANCK JB (1963) Specific impedance of rabbit cerebral cortex. Exp Neurol 7:144-52 [PubMed]

Schubert D, Kötter R, Luhmann HJ, Staiger JF (2006) Morphology, electrophysiology and functional input connectivity of pyramidal neurons characterizes a genuine layer va in the primary somatosensory cortex. Cereb Cortex 16:223-36 [PubMed]

Schubert D, Staiger JF, Cho N, Kotter R, Zilles K, Luhmann HJ (2001) Layer-specific intracolumnar and transcolumnar functional connectivity of layer V pyramidal cells in rat barrel cortex. J Neurosci 21:3580-92 [PubMed]

Schwan HP (1992) Linear and nonlinear electrode polarization and biological materials. Ann Biomed Eng 20:269-88 [PubMed]

Syková E, Nicholson C (2008) Diffusion in brain extracellular space. Physiol Rev 88:1277-340 [Journal] [PubMed]

Toll JS (1956) Causality and the dispersion relation: logical foundations Phys Rev 104:1760-1770

Wagner T, Eden U, Rushmore J, Russo CJ, Dipietro L, Fregni F, Simon S, Rotman S, Pitskel NB, (2014) Impact of brain tissue filtering on neurostimulation fields: a modeling study. Neuroimage 85 Pt 3:1048-57 [Journal] [PubMed]

Warwick C (2010) nderstanding the Kramers-Kronig relation using a pictorial proof: white paper

(55 refs)