Citation Relationships



Rudolph M, Destexhe A (2003) The discharge variability of neocortical neurons during high-conductance states. Neuroscience 119:855-73 [PubMed]

References and models cited by this paper

References and models that cite this paper

Azouz R, Gray CM (1999) Cellular mechanisms contributing to response variability of cortical neurons in vivo. J Neurosci 19:2209-23 [PubMed]

Baranyi A, Szente MB, Woody CD (1993) Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. II. Membrane parameters, action potentials, current-induced voltage responses and electrotonic structures. J Neurophysiol 69:1865-79 [Journal] [PubMed]

Bell A, Mainen ZF, Tsodyks M, Sejnowski TJ (1995) Balancing of conductances may explain irregularity of cortical spiking Technical Report 9502

Borg-Graham LJ, Monier C, Frégnac Y (1998) Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393:369-73 [Journal] [PubMed]

Brunel N, Chance FS, Fourcaud N, Abbott LF (2001) Effects of synaptic noise and filtering on the frequency response of spiking neurons. Phys Rev Lett 86:2186-9 [Journal] [PubMed]

Bugmann G (1995) Controlling The Irregularity Of Spike Trains

Bugmann G, Christodoulou C, Taylor JG (1997) Role of temporal integration and fluctuation detection in the highly irregular firing of a leaky integrator neuron model with partial reset. Neural Comp 9:985-1000

Burns BD, Webb AC (1976) The spontaneous activity of neurones in the cat's cerebral cortex. Proc R Soc Lond B Biol Sci 194:211-23 [Journal] [PubMed]

Christodoulou C, Bugmann G (2000) Near Poisson-type firing produced by concurrent excitation and inhibition. Biosystems 58:41-8 [PubMed]

Christodoulou C, Bugmann G (2001) Coefficient of Variation (CV) vs Mean Interspike Interval (ISI) curves: what do they tell us about the brain? Neurocomputing 38-40:1141-1149

Contreras D, Destexhe A, Steriade M (1997) Intracellular and computational characterization of the intracortical inhibitory control of synchronized thalamic inputs in vivo. J Neurophysiol 78:335-50 [Journal] [PubMed]

Contreras D, Timofeev I, Steriade M (1996) Mechanisms of long-lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. J Physiol 494 ( Pt 1):251-64 [PubMed]

Cragg BG (1967) The density of synapses and neurones in the motor and visual areas of the cerebral cortex. J Anat 101:639-54 [PubMed]

Dean AF (1981) The variability of discharge of simple cells in the cat striate cortex. Exp Brain Res 44:437-40 [PubMed]

DeFelipe J, Fariñas I (1992) The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog Neurobiol 39:563-607 [PubMed]

Destexhe A (2001) Simplified models of neocortical pyramidal cells preserving somatodendritic voltage attenuation Neurocomputing 38-40:167-173

Destexhe A, Mainen ZF, Sejnowski TJ (1998) Kinetic models of synaptic transmission Methods In Neuronal Modeling, Koch C:Segev I, ed. pp.1

   Kinetic synaptic models applicable to building networks (Destexhe et al 1998) [Model]

Destexhe A, Paré D (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J Neurophysiol 81:1531-47 [Journal] [PubMed]

Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ (2001) Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107:13-24 [PubMed]

   Fluctuating synaptic conductances recreate in-vivo-like activity (Destexhe et al 2001) [Model]
   Thalamocortical Relay cell under current clamp in high-conductance state (Zeldenrust et al 2018) [Model]

EVARTS EV (1964) TEMPORAL PATTERNS OF DISCHARGE OF PYRAMIDAL TRACT NEURONS DURING SLEEP AND WAKING IN THE MONKEY. J Neurophysiol 27:152-71 [Journal] [PubMed]

Feng J, Brown D (1998) Impact of temporal variation and the balance between excitation and inhibition on the output of the perfect integrate-and-fire model. Biol Cybern 78:369-76 [Journal] [PubMed]

Feng J, Brown D (2000) Impact of correlated inputs on the output of the integrate- and-fire model. Neural Comput 12:671-92 [PubMed]

Feng JF, Brown D (1999) Coefficient of variation of interspike intervals greater than 0.5. How and when? Biol Cybern 80:291-7 [Journal] [PubMed]

French CR, Sah P, Buckett KJ, Gage PW (1990) A voltage-dependent persistent sodium current in mammalian hippocampal neurons. J Gen Physiol 95:1139-57 [PubMed]

Gillespie DT (1996) The mathematics of Brownian motion and Johnson noise Am J Phys 64:225-240

Gruner JE, Hirsch JC, Sotelo C (1974) Ultrastructural features of the isolated suprasylvian gyrus in the cat. J Comp Neurol 154:1-27 [Journal] [PubMed]

Gutkin BS, Ermentrout GB (1998) Dynamics of membrane excitability determine interspike interval variability: a link between spike generation mechanisms and cortical spike train statistics. Neural Comput 10:1047-65 [PubMed]

Hansel D, Sompolinsky H (1996) Chaos and synchrony in a model of a hypercolumn in visual cortex. J Comput Neurosci 3:7-34 [PubMed]

Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179-209 [PubMed]

Hô N, Destexhe A (2000) Synaptic background activity enhances the responsiveness of neocortical pyramidal neurons. J Neurophysiol 84:1488-96 [Journal] [PubMed]

HODGKIN AL, HUXLEY AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500-44 [Journal] [PubMed]

   Squid axon (Hodgkin, Huxley 1952) (LabAXON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (NEURON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SNNAP) [Model]
   Squid axon (Hodgkin, Huxley 1952) used in (Chen et al 2010) (R language) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SBML, XPP, other) [Model]

Holmes WR, Woody CD (1989) Effects of uniform and non-uniform synaptic 'activation-distributions' on the cable properties of modeled cortical pyramidal neurons. Brain Res 505:12-22 [PubMed]

Holt GR, Softky WR, Koch C, Douglas RJ (1996) Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. J Neurophysiol 75:1806-14 [Journal] [PubMed]

HUBEL DH (1959) Single unit activity in striate cortex of unrestrained cats. J Physiol 147:226-38 [PubMed]

Huguenard JR, Hamill OP, Prince DA (1988) Developmental changes in Na+ conductances in rat neocortical neurons: appearance of a slowly inactivating component. J Neurophysiol 59:778-95 [Journal] [PubMed]

Huguenard JR, McCormick DA (1992) Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J Neurophysiol 68:1373-83 [Journal] [PubMed]

Hunter JD, Milton JG, Thomas PJ, Cowan JD (1998) Resonance effect for neural spike time reliability. J Neurophysiol 80:1427-38 [Journal] [PubMed]

König P, Engel AK, Singer W (1996) Integrator or coincidence detector? The role of the cortical neuron revisited. Trends Neurosci 19:130-7 [PubMed]

Lampl I, Reichova I, Ferster D (1999) Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron 22:361-74 [PubMed]

Larkman AU (1991) Dendritic morphology of pyramidal neurones of the visual cortex of the rat: III. Spine distributions. J Comp Neurol 306:332-43 [Journal] [PubMed]

Lin JK, Pawelzik K, Ernst U, Sejnowski TJ (1998) Irregular synchronous activity in stochastically-coupled networks of integrate-and-fire neurons. Network 9:333-44 [PubMed]

Lytton WW (1996) Optimizing synaptic conductance calculation for network simulations. Neural Comput 8:501-9 [PubMed]

Magee JC, Johnston D (1995) Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J Physiol 487:67-90 [PubMed]

Matsumura M, Cope T, Fetz EE (1988) Sustained excitatory synaptic input to motor cortex neurons in awake animals revealed by intracellular recording of membrane potentials. Exp Brain Res 70:463-9 [PubMed]

McCormick DA, Huguenard JR (1992) A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol 68:1384-400 [Journal] [PubMed]

Migliore M, Hoffman DA, Magee JC, Johnston D (1999) Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. J Comput Neurosci 7:5-15 [PubMed]

   CA1 pyramidal neuron (Migliore et al 1999) [Model]

Noda H, Adey WR (1970) Firing variability in cat association cortex during sleep and wakefulness. Brain Res 18:513-26 [PubMed]

Nowak LG, Sanchez-Vives MV, McCormick DA (1997) Influence of low and high frequency inputs on spike timing in visual cortical neurons. Cereb Cortex 7:487-501 [PubMed]

Paré D, Shink E, Gaudreau H, Destexhe A, Lang EJ (1998) Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons In vivo. J Neurophysiol 79:1450-60 [Journal] [PubMed]

Rudolph M, Destexhe A (2001) Do neocortical pyramidal neurons display stochastic resonance? J Comput Neurosci 11:19-42 [PubMed]

Rudolph M, Destexhe A (2002) Point-conductance models of cortical neurons with high discharge variability Neurocomputing 44-46:147-152

Sakai Y, Funahashi S, Shinomoto S (1999) Temporally correlated inputs to leaky integrate-and-fire models can reproduce spiking statistics of cortical neurons. Neural Netw 12:1181-1190 [PubMed]

Salinas E, Sejnowski TJ (2000) Impact of correlated synaptic input on output firing rate and variability in simple neuronal models. J Neurosci 20:6193-209 [PubMed]

Salinas E, Sejnowski TJ (2001) Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2:539-50 [Journal] [PubMed]

Shadlen MN, Newsome WT (1994) Noise, neural codes and cortical organization. Curr Opin Neurobiol 4:569-79 [PubMed]

Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18:3870-96 [Journal] [PubMed]

Shinomoto S, Sakai Y, Funahashi S (1999) The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex. Neural Comput 11:935-51 [PubMed]

Smith DR, Smith GK (1965) A statistical analysis of the continuous activity of single cortical neurons in the cat unanesthetized isolated forebrain. Biophys J 5:47-74

Softky WR, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J Neurosci 13:334-50 [PubMed]

Steriade M (1978) Cortical long-axoned cells and putative interneurons during the sleep-waking cycle Behav Brain Sci 3:465-514

Steriade M, Timofeev I, Grenier F (2001) Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol 85:1969-85 [Journal] [PubMed]

Stevens CF, Zador AM (1998) Input synchrony and the irregular firing of cortical neurons. Nat Neurosci 1:210-7 [Journal] [PubMed]

Svirskis G, Rinzel J (2000) Influence of temporal correlation of synaptic input on the rate and variability of firing in neurons. Biophys J 79:629-37 [Journal] [PubMed]

Szentagothai J (1965) The use of degeneration in the investigation of short neu- ronal connections. Progress In Brain Research, Singer M:Shade JP, ed. pp.1

Tiesinga PH, José JV, Sejnowski TJ (2000) Comparison of current-driven and conductance-driven neocortical model neurons with Hodgkin-Huxley voltage-gated channels. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 62:8413-9 [PubMed]

Tiesinga PHE, Jose JV (1999) Spiking statistics in noisy hippocampal interneurons Neurocomputing 26:299-304

Tolhurst DJ, Movshon JA, Dean AF (1983) The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Res 23:775-85 [PubMed]

Traub RD, Miles R (1991) Neuronal Networks Of The Hippocampus

Troyer TW, Miller KD (1997) Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell. Neural Comput 9:971-83 [PubMed]

Uhlenbeck GE, Ornstein LS (1930) On the theory of Brownian motion Phys Rev 36:823-841 [Journal]

Usher M, Stemmler M, Koch C, Olami Z (1994) Network amplification of local fluctuations causes high spike rate variability, fractal firing patterns and oscillatory local field potentials. Neural Comp 6:795-836

White EL (1989) Cortical Circuits: Synaptic Organisation Of The Cerebral Cortex Structure, Function, And Theory

Yamada WM, Koch C, Adams PR (1998) Multiple channels and calcium dynamics. Methods In Neuronal Modeling: From Synapses To Networks, Koch C:Segev I, ed. pp.137

Abbasi S, Hudson AE, Maran SK, Cao Y, Abbasi A, Heck DH, Jaeger D (2017) Robust Transmission of Rate Coding in the Inhibitory Purkinje Cell to Cerebellar Nuclei Pathway in Awake Mice PLOS Computational Biology

   Robust transmission in the inhibitory Purkinje Cell to Cerebellar Nuclei pathway (Abbasi et al 2017) [Model]

Arsiero M, Lüscher HR, Lundstrom BN, Giugliano M (2007) The impact of input fluctuations on the frequency-current relationships of layer 5 pyramidal neurons in the rat medial prefrontal cortex. J Neurosci 27:3274-84 [Journal] [PubMed]

   Input Fluctuations effects on f-I curves (Arsiero et al. 2007) [Model]

Chacron MJ, Lindner B, Longtin A (2007) Threshold fatigue and information transfer. J Comput Neurosci 23:301-11 [Journal] [PubMed]

Destexhe A, Rudolph M (2004) Extracting information from the power spectrum of synaptic noise. J Comput Neurosci 17:327-45 [Journal] [PubMed]

Destexhe A, Rudolph M, Paré D (2003) The high-conductance state of neocortical neurons in vivo. Nat Rev Neurosci 4:739-51 [Journal] [PubMed]

Durstewitz D, Gabriel T (2007) Dynamical basis of irregular spiking in NMDA-driven prefrontal cortex neurons. Cereb Cortex 17:894-908 [Journal] [PubMed]

   Irregular spiking in NMDA-driven prefrontal cortex neurons (Durstewitz and Gabriel 2006) [Model]

Masuda N (2005) Simultaneous Rate-Synchrony Codes in Populations of Spiking Neurons Neural Comput 18:45-59

Meffin H, Burkitt AN, Grayden DB (2004) An analytical model for the "large, fluctuating synaptic conductance state" typical of neocortical neurons in vivo. J Comput Neurosci 16:159-75 [Journal] [PubMed]

Muller E, Buesing L, Schemmel J, Meier K (2007) Spike-frequency adapting neural ensembles: beyond mean adaptation and renewal theories. Neural Comput 19:2958-3010 [Journal] [PubMed]

Rangan AV, Cai D (2007) Fast numerical methods for simulating large-scale integrate-and-fire neuronal networks. J Comput Neurosci 22:81-100 [Journal] [PubMed]

Rudolph M, Destexhe A (2006) Analytical integrate-and-fire neuron models with conductance-based dynamics for event-driven simulation strategies. Neural Comput 18:2146-210 [Journal] [PubMed]

Scheler G (2017) Logarithmic distributions prove that intrinsic learning is Hebbian. F1000Res 6:1222 [Journal] [PubMed]

   Logarithmic distributions prove that intrinsic learning is Hebbian (Scheler 2017) [Model]

Trousdale J, Carroll SR, Gabbiani F, Josic K (2014) Near-optimal decoding of transient stimuli from coupled neuronal subpopulations. J Neurosci 34:12206-22 [Journal] [PubMed]

   Vertical System (VS) tangential cells network model (Trousdale et al. 2014) [Model]

(86 refs)