Citation Relationships



Rumbell T, Kozloski J (2019) Dimensions of control for subthreshold oscillations and spontaneous firing in dopamine neurons PLOS Computational Biology 15:1-34

   Control of oscillations and spontaneous firing in dopamine neurons (Rumbell & Kozloski 2019)

References and models cited by this paper

References and models that cite this paper

Achard P, De Schutter E (2006) Complex parameter landscape for a complex neuron model. PLoS Comput Biol 2:e94 [Journal] [PubMed]

Amendola J, Woodhouse A, Martin-Eauclaire MF, Goaillard JM (2012) Ca²?/cAMP-sensitive covariation of I(A) and I(H) voltage dependences tunes rebound firing in dopaminergic neurons. J Neurosci 32:2166-81 [Journal] [PubMed]

Amini B, Clark JW, Canavier CC (1999) Calcium dynamics underlying pacemaker-like and burst firing oscillations in midbrain dopaminergic neurons: a computational study. J Neurophysiol 82:2249-61 [Journal] [PubMed]

Bahl A, Stemmler MB, Herz AV, Roth A (2012) Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data. J Neurosci Methods 210:22-34 [Journal] [PubMed]

   A set of reduced models of layer 5 pyramidal neurons (Bahl et al. 2012) [Model]

Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7:1129-59 [PubMed]

Blythe SN, Wokosin D, Atherton JF, Bevan MD (2009) Cellular mechanisms underlying burst firing in substantia nigra dopamine neurons. J Neurosci 29:15531-41 [Journal] [PubMed]

Canavier CC, Evans RC, Oster AM, Pissadaki EK, Drion G, Kuznetsov AS, Gutkin BS (2016) Implications of cellular models of dopamine neurons for disease. J Neurophysiol 116:2815-2830 [Journal] [PubMed]

Canavier CC, Oprisan SA, Callaway JC, Ji H, Shepard PD (2007) Computational model predicts a role for ERG current in repolarizing plateau potentials in dopamine neurons: implications for modulation of neuronal activity. J Neurophysiol 98:3006-22 [Journal] [PubMed]

   ERG current in repolarizing plateau potentials in dopamine neurons (Canavier et al 2007) [Model]

Carnevale NT, Hines ML (2006) The NEURON Book [Journal]

Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, Meredith GE, Surmeier DJ (2007) 'Rejuvenation' protects neurons in mouse models of Parkinson's disease. Nature 447:1081-6 [Journal] [PubMed]

   Rejuvenation model of dopamine neuron (Chan et al. 2007) [Model]

de Vrind V, Scuvée-Moreau J, Drion G, Hmaied C, Philippart F, Engel D, Seutin V (2016) Interactions between calcium channels and SK channels in midbrain dopamine neurons and their impact on pacemaker regularity: Contrasting roles of N- and L-type channels. Eur J Pharmacol 788:274-279 [Journal] [PubMed]

Devenyi RA, Sobie EA (2016) There and back again: Iterating between population-based modeling and experiments reveals surprising regulation of calcium transients in rat cardiac myocytes. J Mol Cell Cardiol 96:38-48 [Journal] [PubMed]

Drion G, Massotte L, Sepulchre R, Seutin V (2011) How modeling can reconcile apparently discrepant experimental results: the case of pacemaking in dopaminergic neurons. PLoS Comput Biol 7:e1002050 [Journal] [PubMed]

Drion G, O'Leary T, Marder E (2015) Ion channel degeneracy enables robust and tunable neuronal firing rates. Proc Natl Acad Sci U S A 112:E5361-70 [Journal] [PubMed]

Druckmann S, Banitt Y, Gidon A, Schürmann F, Markram H, Segev I (2007) A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Front Neurosci 1:7-18 [Journal] [PubMed]

Dufour MA, Woodhouse A, Amendola J, Goaillard JM (2014) Non-linear developmental trajectory of electrical phenotype in rat substantia nigra pars compacta dopaminergic neurons. Elife [Journal] [PubMed]

Engel D, Seutin V (2015) High dendritic expression of Ih in the proximity of the axon origin controls the integrative properties of nigral dopamine neurons. J Physiol 593:4905-22 [Journal] [PubMed]

Evans RC, Zhu M, Khaliq ZM (2017) Dopamine Inhibition Differentially Controls Excitability of Substantia Nigra Dopamine Neuron Subpopulations through T-Type Calcium Channels. J Neurosci 37:3704-3720 [Journal] [PubMed]

Gentet LJ, Williams SR (2007) Dopamine gates action potential backpropagation in midbrain dopaminergic neurons. J Neurosci 27:1892-901 [Journal] [PubMed]

Golowasch J (2014) Ionic Current Variability and Functional Stability in the Nervous System. Bioscience 64:570-580 [Journal] [PubMed]

Gouwens NW, Berg J, Feng D, Sorensen SA, Zeng H, Hawrylycz MJ, Koch C, Arkhipov A (2018) Systematic generation of biophysically detailed models for diverse cortical neuron types. Nat Commun 9:710 [Journal] [PubMed]

Grace AA (2016) Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci 17:524-32 [Journal] [PubMed]

Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: single spike firing. J Neurosci 4:2866-76 [PubMed]

Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci 4:2877-90 [PubMed]

Grace AA, Onn SP (1989) Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro. J Neurosci 9:3463-81 [PubMed]

Günay C, Edgerton JR, Jaeger D (2008) Channel density distributions explain spiking variability in the globus pallidus: a combined physiology and computer simulation database approach. J Neurosci 28:7476-91 [Journal] [PubMed]

   Globus pallidus multi-compartmental model neuron with realistic morphology (Gunay et al. 2008) [Model]

Guzman JN, Sánchez-Padilla J, Chan CS, Surmeier DJ (2009) Robust pacemaking in substantia nigra dopaminergic neurons. J Neurosci 29:11011-9 [Journal] [PubMed]

Harris NC, Webb C, Greenfield SA (1989) A possible pacemaker mechanism in pars compacta neurons of the guinea-pig substantia nigra revealed by various ion channel blocking agents. Neuroscience 31:355-62 [PubMed]

Häusser M, Stuart G, Racca C, Sakmann B (1995) Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons. Neuron 15:637-47 [PubMed]

Hay E, Hill S, Schürmann F, Markram H, Segev I (2011) Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS Comput Biol 7:e1002107 [Journal] [PubMed]

   Layer V pyramidal cell model with reduced morphology (Mäki-Marttunen et al 2018) [Model]
   L5b PC model constrained for BAC firing and perisomatic current step firing (Hay et al., 2011) [Model]
   Cortical Layer 5b pyr. cell with [Na+]i mechanisms, from Hay et al 2011 (Zylbertal et al 2017) [Model]

Hay E, Schürmann F, Markram H, Segev I (2013) Preserving axosomatic spiking features despite diverse dendritic morphology. J Neurophysiol 109:2972-81 [Journal] [PubMed]

   Preserving axosomatic spiking features despite diverse dendritic morphology (Hay et al., 2013) [Model]

Hendrickson EB, Edgerton JR, Jaeger D (2011) The use of automated parameter searches to improve ion channel kinetics for neural modeling. J Comput Neurosci 31:329-46 [Journal] [PubMed]

Henny P, Brown MT, Northrop A, Faunes M, Ungless MA, Magill PJ, Bolam JP (2012) Structural correlates of heterogeneous in vivo activity of midbrain dopaminergic neurons. Nat Neurosci 15:613-9 [Journal] [PubMed]

J?drzejewski-Szmek Z, Abrahao KP, J?drzejewska-Szmek J, Lovinger DM, Blackwell KT (2018) Parameter Optimization Using Covariance Matrix Adaptation-Evolutionary Strategy (CMA-ES), an Approach to Investigate Differences in Channel Properties Between Neuron Subtypes. Front Neuroinform 12:47 [Journal] [PubMed]

   Parameter optimization using CMA-ES (Jedrzejewski-Szmek et al 2018) [Model]

Ji H, Hougaard C, Herrik KF, Strøbaek D, Christophersen P, Shepard PD (2009) Tuning the excitability of midbrain dopamine neurons by modulating the Ca2+ sensitivity of SK channels. Eur J Neurosci 29:1883-95 [Journal] [PubMed]

Ji H, Tucker KR, Putzier I, Huertas MA, Horn JP, Canavier CC, Levitan ES, Shepard PD (2012) Functional characterization of ether-à-go-go-related gene potassium channels in midbrain dopamine neurons - implications for a role in depolarization block. Eur J Neurosci 36:2906-16 [Journal] [PubMed]

Kang Y, Kitai ST (1993) Calcium spike underlying rhythmic firing in dopaminergic neurons of the rat substantia nigra. Neurosci Res 18:195-207 [PubMed]

Kang Y, Kitai ST (1993) A whole cell patch-clamp study on the pacemaker potential in dopaminergic neurons of rat substantia nigra compacta. Neurosci Res 18:209-21 [PubMed]

Khaliq ZM, Bean BP (2008) Dynamic, nonlinear feedback regulation of slow pacemaking by A-type potassium current in ventral tegmental area neurons. J Neurosci 28:10905-17 [Journal] [PubMed]

Kimm T, Khaliq ZM, Bean BP (2015) Differential Regulation of Action Potential Shape and Burst-Frequency Firing by BK and Kv2 Channels in Substantia Nigra Dopaminergic Neurons. J Neurosci 35:16404-17 [Journal] [PubMed]

Kozloski J (2016) Closed-Loop Brain Model of Neocortical Information-Based Exchange. Front Neuroanat 10:3 [Journal] [PubMed]

Kuznetsova AY, Huertas MA, Kuznetsov AS, Paladini CA, Canavier CC (2010) Regulation of firing frequency in a computational model of a midbrain dopaminergic neuron. J Comput Neurosci 28:389-403 [Journal] [PubMed]

   Regulation of firing frequency in a midbrain dopaminergic neuron model (Kuznetsova et al. 2010) [Model]

Lawson BAJ, Drovandi CC, Cusimano N, Burrage P, Rodriguez B, Burrage K (2018) Unlocking data sets by calibrating populations of models to data density: A study in atrial electrophysiology. Sci Adv 4:e1701676 [Journal] [PubMed]

Liss B, Franz O, Sewing S, Bruns R, Neuhoff H, Roeper J (2001) Tuning pacemaker frequency of individual dopaminergic neurons by Kv4.3L and KChip3.1 transcription. EMBO J 20:5715-24 [Journal] [PubMed]

MacLean JN, Zhang Y, Goeritz ML, Casey R, Oliva R, Guckenheimer J, Harris-Warrick RM (2005) Activity-independent coregulation of IA and Ih in rhythmically active neurons. J Neurophysiol 94:3601-17 [Journal] [PubMed]

MacLean JN, Zhang Y, Johnson BR, Harris-Warrick RM (2003) Activity-independent homeostasis in rhythmically active neurons. Neuron 37:109-20 [PubMed]

Marder E (2011) Variability, compensation, and modulation in neurons and circuits. Proc Natl Acad Sci U S A 108 Suppl 3:15542-8 [Journal] [PubMed]

Marder E, Taylor AL (2011) Multiple models to capture the variability in biological neurons and networks. Nat Neurosci 14:133-8 [Journal] [PubMed]

Masoli S, Rizza MF, Sgritta M, Van Geit W, Schürmann F, D'Angelo E (2017) Single Neuron Optimization as a Basis for Accurate Biophysical Modeling: The Case of Cerebellar Granule Cells. Front Cell Neurosci 11:71 [Journal] [PubMed]

McAnelly ML, Zakon HH (2000) Coregulation of voltage-dependent kinetics of Na(+) and K(+) currents in electric organ. J Neurosci 20:3408-14 [PubMed]

Memelli H, Torben-Nielsen B, Kozloski J (2013) Self-referential forces are sufficient to explain different dendritic morphologies. Front Neuroinform 7:1 [Journal] [PubMed]

Meza RC, López-Jury L, Canavier CC, Henny P (2018) Role of the Axon Initial Segment in the Control of Spontaneous Frequency of Nigral Dopaminergic Neurons In Vivo. J Neurosci 38:733-744 [Journal] [PubMed]

   Role of the AIS in the control of spontaneous frequency of dopaminergic neurons (Meza et al 2017) [Model]

Morotti S, Grandi E (2017) Logistic regression analysis of populations of electrophysiological models to assess proarrythmic risk. MethodsX 4:25-34 [Journal] [PubMed]

Moubarak E, Engel D, Dufour MA, Tapia M, Tell F, Goaillard JM (2019) Robustness to Axon Initial Segment Variation Is Explained by Somatodendritic Excitability in Rat Substantia Nigra Dopaminergic Neurons. J Neurosci 39:5044-5063 [Journal] [PubMed]

   Dopaminergic subtantia nigra neuron (Moubarak et al 2019) [Model]

Neuhoff H, Neu A, Liss B, Roeper J (2002) I(h) channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain. J Neurosci 22:1290-302 [PubMed]

Neymotin SA, Suter BA, Dura-Bernal S, Shepherd GM, Migliore M, Lytton WW (2017) Optimizing computer models of corticospinal neurons to replicate in vitro dynamics. J Neurophysiol 117:148-162 [Journal] [PubMed]

   Computer models of corticospinal neurons replicate in vitro dynamics (Neymotin et al. 2017) [Model]

Ni H, Morotti S, Grandi E (2018) A Heart for Diversity: Simulating Variability in Cardiac Arrhythmia Research. Front Physiol 9:958 [Journal] [PubMed]

O'Leary T, Williams AH, Franci A, Marder E (2014) Cell types, network homeostasis, and pathological compensation from a biologically plausible ion channel expression model. Neuron 82:809-21 [Journal] [PubMed]

Octeau JC, Gangwani MR, Allam SL, Tran D, Huang S, Hoang-Trong TM, Golshani P, Rumbell TH, Kozloski JR, Khakh BS (2019) Transient, Consequential Increases in Extracellular Potassium Ions Accompany Channelrhodopsin2 Excitation. Cell Rep 27:2249-2261.e7 [Journal] [PubMed]

Oster A, Faure P, Gutkin BS (2015) Mechanisms for multiple activity modes of VTA dopamine neurons. Front Comput Neurosci 9:95 [Journal] [PubMed]

Ping HX, Shepard PD (1996) Apamin-sensitive Ca(2+)-activated K+ channels regulate pacemaker activity in nigral dopamine neurons. Neuroreport 7:809-14 [PubMed]

Price KV,Storn RM,Lampinen JA (2005) Differential Evolution

Prinz AA, Bucher D, Marder E (2004) Similar network activity from disparate circuit parameters. Nat Neurosci 7:1345-52 [Journal] [PubMed]

   Lobster STG pyloric network model with calcium sensor (Gunay & Prinz 2010) (Prinz et al. 2004) [Model]

Putzier I, Kullmann PH, Horn JP, Levitan ES (2009) Cav1.3 channel voltage dependence, not Ca2+ selectivity, drives pacemaker activity and amplifies bursts in nigral dopamine neurons. J Neurosci 29:15414-9 [Journal] [PubMed]

Qian K, Yu N, Tucker KR, Levitan ES, Canavier CC (2014) Mathematical analysis of depolarization block mediated by slow inactivation of fast sodium channels in midbrain dopamine neurons. J Neurophysiol 112:2779-90 [Journal] [PubMed]

Ransdell JL, Nair SS, Schulz DJ (2013) Neurons within the same network independently achieve conserved output by differentially balancing variable conductance magnitudes. J Neurosci 33:9950-6 [Journal] [PubMed]

Rumbell TH, Draguljic D, Yadav A, Hof PR, Luebke JI, Weaver CM (2016) Automated evolutionary optimization of ion channel conductances and kinetics in models of young and aged rhesus monkey pyramidal neurons. J Comput Neurosci 41:65-90 [Journal] [PubMed]

   Rhesus Monkey Young and Aged L3 PFC Pyramidal Neurons (Rumbell et al. 2016) [Model]

Sarkar AX, Christini DJ, Sobie EA (2012) Exploiting mathematical models to illuminate electrophysiological variability between individuals. J Physiol 590:2555-67 [Journal] [PubMed]

Sarkar AX, Sobie EA (2010) Regression analysis for constraining free parameters in electrophysiological models of cardiac cells. PLoS Comput Biol 6:e1000914 [Journal] [PubMed]

Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1-27 [Journal] [PubMed]

Sobie EA (2009) Parameter sensitivity analysis in electrophysiological models using multivariable regression. Biophys J 96:1264-74 [Journal] [PubMed]

Svensson CM, Coombes S, Peirce JW (2012) Using evolutionary algorithms for fitting high-dimensional models to neuronal data. Neuroinformatics 10:199-218 [Journal] [PubMed]

Tarfa RA, Evans RC, Khaliq ZM (2017) Enhanced Sensitivity to Hyperpolarizing Inhibition in Mesoaccumbal Relative to Nigrostriatal Dopamine Neuron Subpopulations. J Neurosci 37:3311-3330 [Journal] [PubMed]

   VTA dopamine neuron (Tarfa, Evans, and Khaliq 2017) [Model]

Taylor AL, Goaillard JM, Marder E (2009) How multiple conductances determine electrophysiological properties in a multicompartment model. J Neurosci 29:5573-86 [Journal] [PubMed]

Van Geit W, De Schutter E, Achard P (2008) Automated neuron model optimization techniques: a review. Biol Cybern 99:241-51 [Journal] [PubMed]

Van Geit W, Gevaert M, Chindemi G, Rössert C, Courcol JD, Muller EB, Schürmann F, Segev I, Markram H (2016) BluePyOpt: Leveraging Open Source Software and Cloud Infrastructure to Optimise Model Parameters in Neuroscience. Front Neuroinform 10:17 [Journal] [PubMed]

Vandecasteele M, Deniau JM, Venance L (2011) Spike frequency adaptation is developmentally regulated in substantia nigra pars compacta dopaminergic neurons. Neuroscience 192:1-10 [Journal] [PubMed]

Vanier MC, Bower JM (1999) A comparative survey of automated parameter-search methods for compartmental neural models. J Comput Neurosci 7:149-71 [PubMed]

Waroux O, Massotte L, Alleva L, Graulich A, Thomas E, Liégeois JF, Scuvée-Moreau J, Seutin V (2005) SK channels control the firing pattern of midbrain dopaminergic neurons in vivo. Eur J Neurosci 22:3111-21 [Journal] [PubMed]

Wilson CJ, Callaway JC (2000) Coupled oscillator model of the dopaminergic neuron of the substantia nigra. J Neurophysiol 83:3084-100 [Journal] [PubMed]

Yu N, Canavier CC (2015) A Mathematical Model of a Midbrain Dopamine Neuron Identifies Two Slow Variables Likely Responsible for Bursts Evoked by SK Channel Antagonists and Terminated by Depolarization Block. J Math Neurosci 5:5 [Journal] [PubMed]

   Phase plane reveals two slow variables in midbrain dopamine neuron bursts (Yu and Canavier, 2015) [Model]

(81 refs)