Citation Relationships



Gustafsson B, Wigström H, Abraham WC, Huang YY (1987) Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials. J Neurosci 7:774-80 [PubMed]

References and models cited by this paper

References and models that cite this paper

Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3 Suppl:1178-83 [Journal] [PubMed]

Appleby PA, Elliott T (2005) Synaptic and temporal ensemble interpretation of spike-timing-dependent plasticity. Neural Comput 17:2316-36 [Journal] [PubMed]

Appleby PA, Elliott T (2006) Stable competitive dynamics emerge from multispike interactions in a stochastic model of spike-timing-dependent plasticity. Neural Comput 18:2414-64 [Journal] [PubMed]

Carvalho TP, Buonomano DV (2009) Differential effects of excitatory and inhibitory plasticity on synaptically driven neuronal input-output functions. Neuron 61:774-85 [Journal] [PubMed]

   Balance of excitation and inhibition (Carvalho and Buonomano 2009) [Model]

Gerstner W, Kistler WM (2002) Mathematical formulations of Hebbian learning. Biol Cybern 87:404-15 [Journal] [PubMed]

Holmes WR, Grover LM (2006) Quantifying the magnitude of changes in synaptic level parameters with long-term potentiation. J Neurophysiol 96:1478-91 [Journal] [PubMed]

Jaffe DB, Fisher SA, Brown TH (1994) Confocal laser scanning microscopy reveals voltage-gated calcium signals within hippocampal dendritic spines. J Neurobiol 25:220-33 [Journal] [PubMed]

Karmarkar UR, Najarian MT, Buonomano DV (2002) Mechanisms and significance of spike-timing dependent plasticity. Biol Cybern 87:373-82 [Journal] [PubMed]

Kim Y, Hsu CL, Cembrowski MS, Mensh BD, Spruston N (2015) Dendritic sodium spikes are required for long-term potentiation at distal synapses on hippocampal pyramidal neurons. Elife [Journal] [PubMed]

   CA1 pyramidal neuron: Dendritic Na+ spikes are required for LTP at distal synapses (Kim et al 2015) [Model]

Legenstein R, Maass W (2011) Branch-specific plasticity enables self-organization of nonlinear computation in single neurons. J Neurosci 31:10787-802 [Journal] [PubMed]

Saudargiene A, Porr B, Wörgötter F (2004) How the shape of pre- and postsynaptic signals can influence STDP: a biophysical model. Neural Comput 16:595-625 [Journal] [PubMed]

Shen YS, Gao H, Yao H (2005) Spike timing-dependent synaptic plasticity in visual cortex: a modeling study. J Comput Neurosci 18:25-39 [Journal] [PubMed]

Stuart G, Spruston N, Sakmann B, Häusser M (1997) Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci 20:125-31 [PubMed]

Troyer TW, Doupe AJ (2000) An associational model of birdsong sensorimotor learning II. Temporal hierarchies and the learning of song sequence. J Neurophysiol 84:1224-39 [Journal] [PubMed]

Troyer TW, Doupe AJ (2000) An associational model of birdsong sensorimotor learning I. Efference copy and the learning of song syllables. J Neurophysiol 84:1204-23 [Journal] [PubMed]

Tsai KY, Carnevale NT, Brown TH (1994) Hebbian learning is jointly controlled by electrotonic and input structure Network 5:1-19

Wörgötter F, Porr B (2005) Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural Comput 17:245-319 [Journal] [PubMed]

(17 refs)