Citation Relationships



Bi G, Poo M (2001) Synaptic modification by correlated activity: Hebb's postulate revisited. Annu Rev Neurosci 24:139-66 [PubMed]

References and models cited by this paper

References and models that cite this paper

Antunes G, da Silva SFF, de Souza FMS (2017) Mirror Neurons Modeled Through Spike-Timing-Dependent Plasticity are Affected by Channelopathies Associated with Autism Spectrum Disorder. Int J Neural Syst :1750058 [Journal] [PubMed]

   Mirror Neuron (Antunes et al 2017) [Model]

Benuskova L, Abraham WC (2007) STDP rule endowed with the BCM sliding threshold accounts for hippocampal heterosynaptic plasticity. J Comput Neurosci 22:129-33 [Journal] [PubMed]

Bianchi D, De Michele P, Marchetti C, Tirozzi B, Cuomo S, Marie H, Migliore M (2014) Effects of increasing CREB-dependent transcription on the storage and recall processes in a hippocampal CA1 microcircuit. Hippocampus 24:165-77 [Journal] [PubMed]

   Effects of increasing CREB on storage and recall processes in a CA1 network (Bianchi et al. 2014) [Model]

Bohte SM, Mozer MC (2007) Reducing the variability of neural responses: a computational theory of spike-timing-dependent plasticity. Neural Comput 19:371-403 [Journal] [PubMed]

Burkitt AN, Meffin H, Grayden DB (2004) Spike-timing-dependent plasticity: the relationship to rate-based learning for models with weight dynamics determined by a stable fixed point. Neural Comput 16:885-940 [Journal] [PubMed]

Chao TC, Chen CM (2005) Learning-induced synchronization and plasticity of a developing neural network. J Comput Neurosci 19:311-24 [Journal] [PubMed]

Clopath C, Ziegler L, Vasilaki E, Büsing L, Gerstner W (2008) Tag-trigger-consolidation: a model of early and late long-term-potentiation and depression. PLoS Comput Biol 4:e1000248 [Journal] [PubMed]

   Tag Trigger Consolidation (Clopath and Ziegler et al. 2008) [Model]

Gerkin RC, Lau PM, Nauen DW, Wang YT, Bi GQ (2007) Modular competition driven by NMDA receptor subtypes in spike-timing-dependent plasticity. J Neurophysiol 97:2851-62 [Journal] [PubMed]

   STDP and NMDAR Subunits (Gerkin et al. 2007) [Model]

Gerstner W, Kistler WM (2002) Mathematical formulations of Hebbian learning. Biol Cybern 87:404-15 [Journal] [PubMed]

Gilson M, Masquelier T, Hugues E (2011) STDP allows fast rate-modulated coding with Poisson-like spike trains. PLoS Comput Biol 7:e1002231 [Journal] [PubMed]

   STDP allows fast rate-modulated coding with Poisson-like spike trains (Gilson et al. 2011) [Model]

Guyonneau R, VanRullen R, Thorpe SJ (2005) Neurons tune to the earliest spikes through STDP. Neural Comput 17:859-79 [Journal] [PubMed]

Huang CH, Huang YT, Chen CC, Chan CK (2016) Propagation and synchronization of reverberatory bursts in developing cultured networks. J Comput Neurosci [Journal] [PubMed]

   Reverberatory bursts propagation and synchronization in developing cultured NNs (Huang et al 2016) [Model]

Karmarkar UR, Najarian MT, Buonomano DV (2002) Mechanisms and significance of spike-timing dependent plasticity. Biol Cybern 87:373-82 [Journal] [PubMed]

Kobayashi T, Shimada Y, Fujiwara K, Ikeguchi T (2017) Reproducing Infra-Slow Oscillations with Dopaminergic Modulation. Sci Rep 7:2411 [Journal] [PubMed]

   Reproducing infra-slow oscillations with dopaminergic modulation (Kobayashi et al 2017) [Model]

Masquelier T, Hugues E, Deco G, Thorpe SJ (2009) Oscillations, phase-of-firing coding, and spike timing-dependent plasticity: an efficient learning scheme. J Neurosci 29:13484-93 [Journal] [PubMed]

   Oscillations, phase-of-firing coding and STDP: an efficient learning scheme (Masquelier et al. 2009) [Model]

Morrison A, Mehring C, Geisel T, Aertsen AD, Diesmann M (2005) Advancing the boundaries of high-connectivity network simulation with distributed computing. Neural Comput 17:1776-801 [Journal] [PubMed]

Rudolph M, Destexhe A (2003) A fast-conducting, stochastic integrative mode for neocortical neurons in vivo. J Neurosci 23:2466-76 [PubMed]

Saudargiene A, Cobb S, Graham BP (2015) A computational study on plasticity during theta cycles at Schaffer collateral synapses on CA1 pyramidal cells in the hippocampus. Hippocampus 25:208-18 [Journal] [PubMed]

   CA1 pyramidal neuron: synaptic plasticity during theta cycles (Saudargiene et al. 2015) [Model]

Saudargiene A, Porr B, Wörgötter F (2004) How the shape of pre- and postsynaptic signals can influence STDP: a biophysical model. Neural Comput 16:595-625 [Journal] [PubMed]

Schulz R, Reggia JA (2004) Temporally asymmetric learning supports sequence processing in multi-winner self-organizing maps. Neural Comput 16:535-61 [Journal] [PubMed]

Senn W, Buchs NJ (2003) Spike-Based Synaptic Plasticity and the Emergence of Direction Selective Simple Cells: Mathematical Analysis Journal of Computational Neuroscience 14:119-138 [Journal]

Skorheim S, Razak K, Bazhenov M (2014) Network models of frequency modulated sweep detection. PLoS One 9:e115196 [Journal] [PubMed]

   Network models of frequency modulated sweep detection (Skorheim et al. 2014) [Model]

Soltani A, Wang XJ (2006) A biophysically based neural model of matching law behavior: melioration by stochastic synapses. J Neurosci 26:3731-44 [Journal] [PubMed]

Talathi SS, Abarbanel HD, Ditto WL (2008) Temporal spike pattern learning. Phys Rev E Stat Nonlin Soft Matter Phys 78:031918 [Journal] [PubMed]

Tamosiunaite M, Porr B, Wörgötter F (2007) Self-influencing synaptic plasticity: recurrent changes of synaptic weights can lead to specific functional properties. J Comput Neurosci 23:113-27 [Journal] [PubMed]

   Self-influencing synaptic plasticity (Tamosiunaite et al. 2007) [Model]

Teramae JN, Fukai T (2007) Local cortical circuit model inferred from power-law distributed neuronal avalanches. J Comput Neurosci 22:301-12 [Journal] [PubMed]

Toyoizumi T, Pfister JP, Aihara K, Gerstner W (2007) Optimality model of unsupervised spike-timing-dependent plasticity: synaptic memory and weight distribution. Neural Comput 19:639-71 [Journal] [PubMed]

Urakubo H, Aihara T, Kuroda S, Watanabe M, Kondo S (2004) Spatial localization of synapses required for supralinear summation of action potentials and EPSPs. J Comput Neurosci 16:251-65 [Journal] [PubMed]

Urakubo H, Honda M, Froemke RC, Kuroda S (2008) Requirement of an allosteric kinetics of NMDA receptors for spike timing-dependent plasticity. J Neurosci 28:3310-23 [Journal] [PubMed]

   An allosteric kinetics of NMDARs in STDP (Urakubo et al. 2008) [Model]

Versace M, Ames H, Léveillé J, Fortenberry B, Gorchetchnikov A (2008) KInNeSS: a modular framework for computational neuroscience. Neuroinformatics 6:291-309 [Journal] [PubMed]

   KInNeSS : a modular framework for computational neuroscience (Versace et al. 2008) [Model]

Wennekers T, Ay N (2005) Finite state automata resulting from temporal information maximization and a temporal learning rule. Neural Comput 17:2258-90 [Journal] [PubMed]

Wörgötter F, Porr B (2005) Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural Comput 17:245-319 [Journal] [PubMed]

Wu S, Amari S (2005) Computing with continuous attractors: stability and online aspects. Neural Comput 17:2215-39 [Journal] [PubMed]

Zhou YD, Acker CD, Netoff TI, Sen K, White JA (2005) Increasing Ca2+ transients by broadening postsynaptic action potentials enhances timing-dependent synaptic depression. Proc Natl Acad Sci U S A 102:19121-5 [Journal] [PubMed]

(34 refs)