Citation Relationships



van Rossum MC, Bi GQ, Turrigiano GG (2000) Stable Hebbian learning from spike timing-dependent plasticity. J Neurosci 20:8812-21[PubMed]

References and models cited by this paper

References and models that cite this paper

Aoki T, Aoyagi T (2007) Synchrony-induced switching behavior of spike pattern attractors created by spike-timing-dependent plasticity. Neural Comput 19:2720-38 [PubMed]

Appleby PA, Elliott T (2005) Synaptic and temporal ensemble interpretation of spike-timing-dependent plasticity. Neural Comput 17:2316-36 [PubMed]

Appleby PA, Elliott T (2006) Stable competitive dynamics emerge from multispike interactions in a stochastic model of spike-timing-dependent plasticity. Neural Comput 18:2414-64 [PubMed]

Appleby PA, Elliott T (2007) Multispike interactions in a stochastic model of spike-timing-dependent plasticity. Neural Comput 19:1362-99 [PubMed]

Badoual M, Zou Q, Davison AP, Rudolph M, Bal T, Fregnac Y, Destexhe A (2006) Biophysical and phenomenological models of multiple spike interactions in spike-timing dependent plasticity. Int J Neural Syst 16:79-97 [Journal] [PubMed]

   Biophysical and phenomenological models of spike-timing dependent plasticity (Badoual et al. 2006) [Model]

Bohte SM, Mozer MC (2007) Reducing the variability of neural responses: a computational theory of spike-timing-dependent plasticity. Neural Comput 19:371-403 [PubMed]

Burkitt AN, Meffin H, Grayden DB (2004) Spike-timing-dependent plasticity: the relationship to rate-based learning for models with weight dynamics determined by a stable fixed point. Neural Comput 16:885-940 [PubMed]

Davison AP, Fregnac Y (2006) Learning Cross-Modal Spatial Transformations through Spike Timing-Dependent Plasticity J Neurosci 26:5604-5615 [Journal] [PubMed]

   Learning spatial transformations through STDP (Davison, Fr├ęgnac 2006) [Model]

Gerstner W, Kistler WM (2002) Mathematical formulations of Hebbian learning. Biol Cybern 87:404-15 [PubMed]

Gilson M, Masquelier T, Hugues E (2011) STDP Allows Fast Rate-Modulated Coding with Poisson-Like Spike Trains PLoS Comput Biol 7(10):e1002231 [Journal]

   STDP allows fast rate-modulated coding with Poisson-like spike trains (Gilson et al. 2011) [Model]

Gurney KN, Humphries MD, Redgrave P (2015) A new framework for cortico-striatal plasticity: behavioural theory meets in vitro data at the reinforcement-action interface. PLoS Biol 13:e1002034 [Journal] [PubMed]

   Cortico-striatal plasticity in medium spiny neurons (Gurney et al 2015) [Model]

Guyonneau R, VanRullen R, Thorpe SJ (2005) Neurons tune to the earliest spikes through STDP. Neural Comput 17:859-79 [PubMed]

Hosaka R, Araki O, Ikeguchi T (2008) STDP Provides the Substrate for Igniting Synfire Chains by Spatiotemporal Input Patterns. Neural Comput 20:415-35 [PubMed]

Iannella N, Tanaka S (2006) Synaptic efficacy cluster formation across the dendrite via STDP. Neurosci Lett 403:24-9 [Journal] [PubMed]

Jun JK, Jin DZ (2007) Development of neural circuitry for precise temporal sequences through spontaneous activity, axon remodeling, and synaptic plasticity. PLoS ONE 2:e723 [Journal] [PubMed]

   Formation of synfire chains (Jun and Jin 2007) [Model]

Legenstein R, Maass W (2011) Branch-specific plasticity enables self-organization of nonlinear computation in single neurons. J Neurosci 31:10787-802 [Journal] [PubMed]

Legenstein R, Naeger C, Maass W (2005) What can a neuron learn with spike-timing-dependent plasticity? Neural Comput 17:2337-82 [PubMed]

Masquelier T (2017) STDP allows close-to-optimal spatiotemporal spike pattern detection by single coincidence detector neurons Neuroscience, in press, accepted manuscript [Journal]

   Optimal spatiotemporal spike pattern detection by STDP (Masquelier 2017) [Model]

Masquelier T, Hugues E, Deco G, Thorpe SJ (2009) Oscillations, Phase-of-Firing Coding and Spike Timing-Dependent Plasticity: an Efficient Learning Scheme. J. Neurosci. 29(43):13484-13493 [Journal] [PubMed]

   Oscillations, phase-of-firing coding and STDP: an efficient learning scheme (Masquelier et al. 2009) [Model]

Masuda N, Aihara K (2004) Self-organizing dual coding based on spike-time-dependent plasticity. Neural Comput 16:627-63 [PubMed]

Masuda N, Kori H (2007) Formation of feedforward networks and frequency synchrony by spike-timing-dependent plasticity. J Comput Neurosci 22:327-45 [Journal] [PubMed]

Morrison A, Aertsen A, Diesmann M (2007) Spike-timing-dependent plasticity in balanced random networks. Neural Comput 19:1437-67 [PubMed]

Muller E, Buesing L, Schemmel J, Meier K (2007) Spike-frequency adapting neural ensembles: beyond mean adaptation and renewal theories. Neural Comput 19:2958-3010 [PubMed]

Muller L, Brette R, Gutkin B (2011) Spike-Timing Dependent Plasticity and Feed-Forward Input Oscillations Produce Precise and Invariant Spike Phase-Locking. Front Comput Neurosci 5:45 [Journal] [PubMed]

   STDP and oscillations produce phase-locking (Muller et al. 2011) [Model]

O`Donnell C, Nolan MF, van Rossum MCW (2011) Dendritic spine dynamics regulate the long-term stability of synaptic plasticity. J Neurosci 31:16142-56 [Journal] [PubMed]

   CA1 pyramidal neuron dendritic spine with plasticity (O`Donnell et al. 2011) [Model]

Pedrosa V, Clopath C (2017) The role of neuromodulators in cortical plasticity. A computational perspective. Front. Synaptic Neurosci. 8:38 [Journal]

   A simple model of neuromodulatory state-dependent synaptic plasticity (Pedrosa and Clopath, 2016) [Model]

Rabinowitch I, Segev I (2006a) The endurance and selectivity of spatial patterns of long-term potentiation-depression in dendrites under homeostatic synaptic plasticity. J Neurosci 26:13474-84 [Journal] [PubMed]

   Homeostatic synaptic plasticity (Rabinowitch and Segev 2006a,b) [Model]

Rabinowitch I, Segev I (2006b) The interplay between homeostatic synaptic plasticity and functional dendritic compartments. J Neurophysiol 96:276-83 [Journal] [PubMed]

   Homeostatic synaptic plasticity (Rabinowitch and Segev 2006a,b) [Model]

Renart A, Song P, Wang XJ (2003) Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks. Neuron 38:473-85 [PubMed]

Richardson MJ, Gerstner W (2005) Synaptic shot noise and conductance fluctuations affect the membrane voltage with equal significance. Neural Comput 17:923-47 [PubMed]

Richert M, Nageswaran JM, Dutt N, Krichmar JL (2011) An efficient simulation environment for modeling large-scale cortical processing. Front Neuroinform 5:19 [Journal] [PubMed]

   Efficient simulation environment for modeling large-scale cortical processing (Richert et al. 2011) [Model]

Rowan MS, Neymotin SA, Lytton WW (2014) Electrostimulation to reduce synaptic scaling driven progression of Alzheimer's disease. Front Comput Neurosci 8:39 [Journal] [PubMed]

   Electrostimulation to reduce synaptic scaling driven progression of Alzheimers (Rowan et al. 2014) [Model]

Rowan MS,Neymotin SA (2013) Synaptic Scaling Balances Learning in a Spiking Model of Neocortex Adaptive and Natural Computing Algorithms, Tomassini M, Antonioni A, Daolio F, Buesser P, ed. pp.20 [Journal]

   Synaptic scaling balances learning in a spiking model of neocortex (Rowan & Neymotin 2013) [Model]

Rumsey CC, Abbott LF (2004) Equalization of synaptic efficacy by activity- and timing-dependent synaptic plasticity. J Neurophysiol 91:2273-80 [Journal] [PubMed]

Senn W, Fusi S (2005) Learning only when necessary: better memories of correlated patterns in networks with bounded synapses. Neural Comput 17:2106-38 [PubMed]

Shen YS, Gao H, Yao H (2005) Spike Timing-Dependent Synaptic Plasticity in Visual Cortex: A Modeling Study J Comput Neurosci 18:25-39 [Journal]

Toyoizumi T, Pfister JP, Aihara K, Gerstner W (2007) Optimality model of unsupervised spike-timing-dependent plasticity: synaptic memory and weight distribution. Neural Comput 19:639-71 [PubMed]

Urakubo H, Honda M, Froemke RC, Kuroda S (2008) Requirement of an allosteric kinetics of NMDA receptors for spike timing-dependent plasticity. J Neurosci 28:3310-23 [Journal] [PubMed]

   An allosteric kinetics of NMDARs in STDP (Urakubo et al. 2008) [Model]

Worgotter F, Porr B (2005) Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural Comput 17:245-319 [PubMed]

(39 refs)