Citation Relationships



Rothman JS, Manis PB (2003) The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons. J Neurophysiol 89:3097-113 [PubMed]

   CN bushy, stellate neurons (Rothman, Manis 2003) (Brian 2)

   CN bushy, stellate neurons (Rothman, Manis 2003) (Brian)

   CN bushy, stellate neurons (Rothman, Manis 2003)

References and models cited by this paper

References and models that cite this paper

Arle JE, Kim DO (1991) Neural modeling of intrinsic and spike-discharge properties of cochlear nucleus neurons. Biol Cybern 64:273-83 [PubMed]

Bal R, Oertel D (2000) Hyperpolarization-activated, mixed-cation current (I(h)) in octopus cells of the mammalian cochlear nucleus. J Neurophysiol 84:806-17 [Journal] [PubMed]

   CN Octopus Cell: Ih current (Bal, Oertel 2000) [Model]

Bal R, Oertel D (2001) Potassium currents in octopus cells of the mammalian cochlear nucleus. J Neurophysiol 86:2299-311 [Journal] [PubMed]

Banks MI, Pearce RA, Smith PH (1993) Hyperpolarization-activated cation current (Ih) in neurons of the medial nucleus of the trapezoid body: voltage-clamp analysis and enhancement by norepinephrine and cAMP suggest a modulatory mechanism in the auditory brain stem. J Neurophysiol 70:1420-32 [Journal] [PubMed]

Banks MI, Sachs MB (1991) Regularity analysis in a compartmental model of chopper units in the anteroventral cochlear nucleus. J Neurophysiol 65:606-29 [Journal] [PubMed]

Barnes-Davies M, Forsythe ID (1995) Pre- and postsynaptic glutamate receptors at a giant excitatory synapse in rat auditory brainstem slices. J Physiol 488 ( Pt 2):387-406 [PubMed]

Belluzzi O, Sacchi O, Wanke E (1985) A fast transient outward current in the rat sympathetic neurone studied under voltage-clamp conditions. J Physiol 358:91-108 [PubMed]

Blackburn CC, Sachs MB (1989) Classification of unit types in the anteroventral cochlear nucleus: PST histograms and regularity analysis. J Neurophysiol 62:1303-29 [Journal] [PubMed]

Brew HM, Forsythe ID (1995) Two voltage-dependent K+ conductances with complementary functions in postsynaptic integration at a central auditory synapse. J Neurosci 15:8011-22 [PubMed]

Cant NB (1981) The fine structure of two types of stellate cells in the anterior division of the anteroventral cochlear nucleus of the cat. Neuroscience 6:2643-55 [PubMed]

Connor JA, Stevens CF (1971) Inward and delayed outward membrane currents in isolated neural somata under voltage clamp. J Physiol 213:1-19 [PubMed]

Connor JA, Stevens CF (1971) Voltage clamp studies of a transient outward membrane current in gastropod neural somata. J Physiol 213:21-30 [PubMed]

Costa PF (1996) The kinetic parameters of sodium currents in maturing acutely isolated rat hippocampal CA1 neurones. Brain Res Dev Brain Res 91:29-40 [PubMed]

Cuttle MF, Rusznák Z, Wong AY, Owens S, Forsythe ID (2001) Modulation of a presynaptic hyperpolarization-activated cationic current (I(h)) at an excitatory synaptic terminal in the rat auditory brainstem. J Physiol 534:733-44 [PubMed]

Francis HW, Manis PB (2000) Effects of deafferentation on the electrophysiology of ventral cochlear nucleus neurons. Hear Res 149:91-105 [PubMed]

FRANKENHAEUSER B, HUXLEY AF (1964) THE ACTION POTENTIAL IN THE MYELINATED NERVE FIBER OF XENOPUS LAEVIS AS COMPUTED ON THE BASIS OF VOLTAGE CLAMP DATA. J Physiol 171:302-15 [Journal] [PubMed]

   Xenopus Myelinated Neuron (Frankenhaeuser, Huxley 1964) [Model]

Fu XW, Brezden BL, Wu SH (1997) Hyperpolarization-activated inward current in neurons of the rat's dorsal nucleus of the lateral lemniscus in vitro. J Neurophysiol 78:2235-45 [Journal] [PubMed]

Gentet LJ, Stuart GJ, Clements JD (2000) Direct measurement of specific membrane capacitance in neurons. Biophys J 79:314-20 [Journal] [PubMed]

GOLDBERG JM, ADRIAN HO, SMITH FD (1964) RESPONSE OF NEURONS OF THE SUPERIOR OLIVARY COMPLEX OF THE CAT TO ACOUSTIC STIMULI OF LONG DURATION. J Neurophysiol 27:706-49 [Journal] [PubMed]

Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32:613-36 [Journal] [PubMed]

HAGIWARA S, KUSANO K, SAITO N (1961) Membrane changes of Onchidium nerve cell in potassium-rich media. J Physiol 155:470-89 [PubMed]

Hewitt MJ, Meddis R, Shackleton TM (1992) A computer model of a cochlear-nucleus stellate cell: responses to amplitude-modulated and pure-tone stimuli. J Acoust Soc Am 91:2096-109 [PubMed]

HODGKIN AL, HUXLEY AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500-44 [Journal] [PubMed]

   Squid axon (Hodgkin, Huxley 1952) (LabAXON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (NEURON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SNNAP) [Model]
   Squid axon (Hodgkin, Huxley 1952) used in (Chen et al 2010) (R language) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SBML, XPP, other) [Model]

Huguenard JR, McCormick DA (1992) Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J Neurophysiol 68:1373-83 [Journal] [PubMed]

Isaacson JS, Walmsley B (1995) Receptors underlying excitatory synaptic transmission in slices of the rat anteroventral cochlear nucleus. J Neurophysiol 73:964-73 [Journal] [PubMed]

Ivanina T, Perets T, Thornhill WB, Levin G, Dascal N, Lotan I (1994) Phosphorylation by protein kinase A of RCK1 K+ channels expressed in Xenopus oocytes. Biochemistry 33:8786-92 [PubMed]

Johnson DH (1980) The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J Acoust Soc Am 68:1115-22 [PubMed]

Joris PX, Carney LH, Smith PH, Yin TC (1994) Enhancement of neural synchronization in the anteroventral cochlear nucleus. I. Responses to tones at the characteristic frequency. J Neurophysiol 71:1022-36 [Journal] [PubMed]

Kanemasa T, Gan L, Perney TM, Wang LY, Kaczmarek LK (1995) Electrophysiological and pharmacological characterization of a mammalian Shaw channel expressed in NIH 3T3 fibroblasts. J Neurophysiol 74:207-17 [Journal] [PubMed]

Kanold PO, Manis PB (1999) Transient potassium currents regulate the discharge patterns of dorsal cochlear nucleus pyramidal cells. J Neurosci 19:2195-208 [PubMed]

   CN pyramidal fusiform cell (Kanold, Manis 2001) [Model]

Kanold PO, Manis PB (2001) A physiologically based model of discharge pattern regulation by transient K+ currents in cochlear nucleus pyramidal cells. J Neurophysiol 85:523-38 [Journal] [PubMed]

   CN pyramidal fusiform cell (Kanold, Manis 2001) [Model]

Kössl M, Vater M (1989) Noradrenaline enhances temporal auditory contrast and neuronal timing precision in the cochlear nucleus of the mustached bat. J Neurosci 9:4169-78 [PubMed]

Kros CJ, Crawford AC (1990) Potassium currents in inner hair cells isolated from the guinea-pig cochlea. J Physiol 421:263-91 [PubMed]

Levin G, Keren T, Peretz T, Chikvashvili D, Thornhill WB, Lotan I (1995) Regulation of RCK1 currents with a cAMP analog via enhanced protein synthesis and direct channel phosphorylation. J Biol Chem 270:14611-8 [PubMed]

Manis PB, Marx SO (1991) Outward currents in isolated ventral cochlear nucleus neurons. J Neurosci 11:2865-80 [PubMed]

Matthias K, Seifert G, Reinhardt S, Steinhäuser C (2002) Modulation of voltage-gated K(+) channels Kv11 and Kv1 4 by forskolin. Neuropharmacology 43:444-9 [PubMed]

Oertel D (1983) Synaptic responses and electrical properties of cells in brain slices of the mouse anteroventral cochlear nucleus. J Neurosci 3:2043-53 [PubMed]

Oertel D (1991) The role of intrinsic neuronal properties in the encoding of auditory information in the cochlear nuclei. Curr Opin Neurobiol 1:221-8 [PubMed]

Ogata N, Tatebayashi H (1993) Kinetic analysis of two types of Na+ channels in rat dorsal root ganglia. J Physiol 466:9-37 [PubMed]

Parri HR, Crunelli V (1998) Sodium current in rat and cat thalamocortical neurons: role of a non-inactivating component in tonic and burst firing. J Neurosci 18:854-67 [PubMed]

Perney TM, Kaczmarek LK (1997) Localization of a high threshold potassium channel in the rat cochlear nucleus. J Comp Neurol 386:178-202 [PubMed]

Rathouz M, Trussell L (1998) Characterization of outward currents in neurons of the avian nucleus magnocellularis. J Neurophysiol 80:2824-35 [Journal] [PubMed]

Rothman JS, Manis PB (1996) Properties of a low-threshold potassium current in ventral cochlear nucleus neurons Soc Neurosci Abstr 22:647

Rothman JS, Manis PB (2003) Kinetic analyses of three distinct potassium conductances in ventral cochlear nucleus neurons. J Neurophysiol 89:3083-96 [Journal] [PubMed]

   CN bushy, stellate neurons (Rothman, Manis 2003) [Model]

Rothman JS, Manis PB (2003) Differential expression of three distinct potassium currents in the ventral cochlear nucleus. J Neurophysiol 89:3070-82 [Journal] [PubMed]

   CN bushy, stellate neurons (Rothman, Manis 2003) [Model]

Rothman JS, Young ED (1996) Enhancement of neural synchronization in computational models of ventral cochlear nucleus bushy cells. Aud Neurosci 2:47-62

Rothman JS, Young ED, Manis PB (1993) Convergence of auditory nerve fibers onto bushy cells in the ventral cochlear nucleus: implications of a computational model. J Neurophysiol 70:2562-83 [Journal] [PubMed]

Rudy B (1988) Diversity and ubiquity of K channels. Neuroscience 25:729-49 [PubMed]

Rusznák Z, Forsythe ID, Stanfield PR (1996) Characterization of the hyperpolarization activated nonspecific cation current (Ih) of bushy neurones from the rat anteroventral cochlear nucleus studied in a thin brain slice preparation. Neurobiology (Bp) 4:275-6 [PubMed]

Ryugo DK, Sento S (1991) Synaptic connections of the auditory nerve in cats: relationship between endbulbs of held and spherical bushy cells. J Comp Neurol 305:35-48 [Journal] [PubMed]

Sah P, Gibb AJ, Gage PW (1988) The sodium current underlying action potentials in guinea pig hippocampal CA1 neurons. J Gen Physiol 91:373-98 [PubMed]

Schild JH, Kunze DL (1997) Experimental and modeling study of Na+ current heterogeneity in rat nodose neurons and its impact on neuronal discharge. J Neurophysiol 78:3198-209 [Journal] [PubMed]

   Nodose sensory neuron (Schild et al. 1994, Schild and Kunze 1997) [Model]

Schwarz DW, Puil E (1997) Firing properties of spherical bushy cells in the anteroventral cochlear nucleus of the gerbil. Hear Res 114:127-38 [PubMed]

Travagli RA, Gillis RA (1994) Hyperpolarization-activated currents, IH and IKIR, in rat dorsal motor nucleus of the vagus neurons in vitro. J Neurophysiol 71:1308-17 [Journal] [PubMed]

Wang LY, Gan L, Forsythe ID, Kaczmarek LK (1998) Contribution of the Kv3.1 potassium channel to high-frequency firing in mouse auditory neurones. J Physiol 509 ( Pt 1):183-94 [PubMed]

   MNTB Neuron: Kv3.1 currents (Wang et al 1998) [Model]

Wang X, Sachs MB (1995) Transformation of temporal discharge patterns in a ventral cochlear nucleus stellate cell model: implications for physiological mechanisms. J Neurophysiol 73:1600-16 [Journal] [PubMed]

White JA, Young ED, Manis PB (1994) The electrotonic structure of regular-spiking neurons in the ventral cochlear nucleus may determine their response properties. J Neurophysiol 71:1774-86 [Journal] [PubMed]

Wu SH, Oertel D (1984) Intracellular injection with horseradish peroxidase of physiologically characterized stellate and bushy cells in slices of mouse anteroventral cochlear nucleus. J Neurosci 4:1577-88 [PubMed]

Zhang S, Trussell LO (1994) A characterization of excitatory postsynaptic potentials in the avian nucleus magnocellularis. J Neurophysiol 72:705-18 [Journal] [PubMed]

Ashida G, Abe K, Funabiki K, Konishi M (2007) Passive soma facilitates submillisecond coincidence detection in the owl's auditory system. J Neurophysiol 97:2267-82 [Journal] [PubMed]

Bahmer A, Langner G (2006) Oscillating neurons in the cochlear nucleus: II. Simulation results. Biol Cybern 95:381-92 [Journal] [PubMed]

   Oscillating neurons in the cochlear nucleus (Bahmer Langner 2006a, b, and 2007) [Model]

Bahmer A, Langner G (2007) Simulation of oscillating neurons in the cochlear nucleus: a possible role for neural nets, onset cells, and synaptic delays Hearing - from basic research to applications (Proc. of International Symp. of Hearing), Kollmeier B, Klump G, Hohmann V, Langemann U, Mauermann M, Uppenkamp S, Verhey J, ed. [Journal]

   Oscillating neurons in the cochlear nucleus (Bahmer Langner 2006a, b, and 2007) [Model]

Bahmer A, Langner G (2009) A simulation of chopper neurons in the cochlear nucleus with wideband input from onset neurons. Biol Cybern 100:21-33 [Journal] [PubMed]

   Oscillating neurons in the cochlear nucleus (Bahmer Langner 2006a, b, and 2007) [Model]

Bahmer A, Langner G (2009) Parameters for a model of an oscillating neuronal network in the cochlear nucleus defined by genetic algorithms. Biol Cybern 102:81-93 [Journal] [PubMed]

   Oscillating neurons in the cochlear nucleus (Bahmer Langner 2006a, b, and 2007) [Model]

Clay JR, Paydarfar D, Forger DB (2008) A simple modification of the Hodgkin and Huxley equations explains type 3 excitability in squid giant axons. J R Soc Interface 5.29:1421-8 [Journal] [PubMed]

   Model of Type 3 firing in neurons (Clay et al 2008) [Model]

Fernandez FR, Mehaffey WH, Molineux ML, Turner RW (2005) High-threshold K+ current increases gain by offsetting a frequency-dependent increase in low-threshold K+ current. J Neurosci 25:363-71 [Journal] [PubMed]

   Pyramidal neurons: IKHT offsets activation of IKLT to increase gain (Fernandez et al 2005) [Model]

Hight AE, Kalluri R (2016) A biophysical model examining the role of low-voltage-activated potassium currents in shaping the responses of vestibular ganglion neurons. J Neurophysiol 116:503-21 [Journal] [PubMed]

Holmes WR, Huwe JA, Williams B, Rowe MH, Peterson EH (2017) Models of utricular bouton afferents: role of afferent-hair cell connectivity in determining spike train regularity. J Neurophysiol 117:1969-1986 [Journal] [PubMed]

   Role of afferent-hair cell connectivity in determining spike train regularity (Holmes et al 2017) [Model]

Manis PB, Campagnola L (2018) A biophysical modelling platform of the cochlear nucleus and other auditory circuits: From channels to networks. Hear Res 360:76-91 [Journal] [PubMed]

   Modelling platform of the cochlear nucleus and other auditory circuits (Manis & Compagnola 2018) [Model]

Rössert C, Moore LE, Straka H, Glasauer S (2011) Cellular and network contributions to vestibular signal processing: impact of ion conductances, synaptic inhibition, and noise. J Neurosci 31:8359-72 [Journal] [PubMed]

   Frog second-order vestibular neuron models (Rossert et al. 2011) [Model]

Rothman JS, Manis PB (2003) Kinetic analyses of three distinct potassium conductances in ventral cochlear nucleus neurons. J Neurophysiol 89:3083-96 [Journal] [PubMed]

   CN bushy, stellate neurons (Rothman, Manis 2003) [Model]

Rothman JS, Manis PB (2003) Differential expression of three distinct potassium currents in the ventral cochlear nucleus. J Neurophysiol 89:3070-82 [Journal] [PubMed]

   CN bushy, stellate neurons (Rothman, Manis 2003) [Model]

Rudnicki M, Hemmert W (2017) High Entrainment Constrains Synaptic Depression Levels of an In vivo Globular Bushy Cell Model. Front Comput Neurosci 11:16 [Journal] [PubMed]

   High entrainment constrains synaptic depression in a globular bushy cell (Rudnicki & Hemmert 2017) [Model]

Schmerl BA, McDonnell MD (2013) Channel noise induced stochastic facilitation in an auditory brainstem neuron model Physical Review E 88:052722 [Journal]

   Simulating ion channel noise in an auditory brainstem neuron model (Schmerl & McDonnell 2013) [Model]

Spirou GA, Rager J, Manis PB (2005) Convergence of auditory-nerve fiber projections onto globular bushy cells. Neuroscience 136:843-63 [Journal] [PubMed]

Watanabe T, Shimazaki T, Oda Y (2017) Coordinated Expression of Two Types of Low-Threshold K+ Channels Establishes Unique Single Spiking of Mauthner Cells among Segmentally Homologous Neurons in the Zebrafish Hindbrain. eNeuro [Journal] [PubMed]

   Zebrafish Mauthner-cell model (Watanabe et al 2017) [Model]

Winters BD, Jin SX, Ledford KR, Golding NL (2017) Amplitude Normalization of Dendritic EPSPs at the Soma of Binaural Coincidence Detector Neurons of the Medial Superior Olive. J Neurosci 37:3138-3149 [Journal] [PubMed]

Zhang X, Carney LH (2005) Response properties of an integrate-and-fire model that receives subthreshold inputs. Neural Comput 17:2571-601 [Journal] [PubMed]

   Response properties of an integrate and fire model (Zhang and Carney 2005) [Model]

Zhou Y, Carney LH, Colburn HS (2005) A model for interaural time difference sensitivity in the medial superior olive: interaction of excitatory and inhibitory synaptic inputs, channel dynamics, and cellular morphology. J Neurosci 25:3046-58 [Journal] [PubMed]

   A model for interaural time difference sensitivity in the medial superior olive (Zhou et al 2005) [Model]

(79 refs)