Citation Relationships



Bringuier V, Chavane F, Glaeser L, Frégnac Y (1999) Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science 283:695-9 [PubMed]

References and models cited by this paper

References and models that cite this paper

Debay D, Wolfart J, Le Franc Y, Le Masson G, Bal T (2004) Exploring spike transfer through the thalamus using hybrid artificial-biological neuronal networks. J Physiol Paris 98:540-58 [Journal] [PubMed]

Destexhe A, Sejnowski TJ (2003) Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiol Rev 83:1401-53 [Journal] [PubMed]

EscabĂ­ MA, Nassiri R, Miller LM, Schreiner CE, Read HL (2005) The contribution of spike threshold to acoustic feature selectivity, spike information content, and information throughput. J Neurosci 25:9524-34 [Journal] [PubMed]

Gutkin BS, Laing CR, Colby CL, Chow CC, Ermentrout GB (2001) Turning on and off with excitation: the role of spike-timing asynchrony and synchrony in sustained neural activity. J Comput Neurosci 11:121-34 [PubMed]

Keil MS (2006) Smooth gradient representations as a unifying account of Chevreul's illusion, Mach bands, and a variant of the Ehrenstein disk. Neural Comput 18:871-903 [Journal] [PubMed]

Masuda N, Doiron B, Longtin A, Aihara K (2005) Coding of temporally varying signals in networks of spiking neurons with global delayed feedback. Neural Comput 17:2139-75 [Journal] [PubMed]

Nenadic Z, Ghosh BK, Ulinski P (2003) Propagating waves in visual cortex: a large-scale model of turtle visual cortex. J Comput Neurosci 14:161-84 [PubMed]

   Turtle visual cortex model (Nenadic et al. 2003, Wang et al. 2005, Wang et al. 2006) [Model]

Rangan AV, Cai D, McLaughlin DW (2005) Modeling the spatiotemporal cortical activity associated with the line-motion illusion in primary visual cortex. Proc Natl Acad Sci U S A 102:18793-800 [Journal] [PubMed]

Robbins KA, Senseman DM (2004) Extracting wave structure from biological data with application to responses in turtle visual cortex. J Comput Neurosci 16:267-98 [Journal] [PubMed]

   Turtle visual cortex model (Nenadic et al. 2003, Wang et al. 2005, Wang et al. 2006) [Model]

Schulz R, Reggia JA (2005) Mirror symmetric topographic maps can arise from activity-dependent synaptic changes. Neural Comput 17:1059-83 [Journal] [PubMed]

Shushruth S, Mangapathy P, Ichida JM, Bressloff PC, Schwabe L, Angelucci A (2012) Strong recurrent networks compute the orientation tuning of surround modulation in the primate primary visual cortex. J Neurosci 32:308-21 [Journal] [PubMed]

   Surround Suppression in V1 via Withdraw of Balanced Local Excitation in V1 (Shushruth 2012) [Model]

Wang W, Campaigne C, Ghosh BK, Ulinski PS (2005) Two cortical circuits control propagating waves in visual cortex. J Comput Neurosci 19:263-89 [Journal] [PubMed]

   Turtle visual cortex model (Nenadic et al. 2003, Wang et al. 2005, Wang et al. 2006) [Model]

Zerlaut Y, Chemla S, Chavane F, Destexhe A (2018) Modeling mesoscopic cortical dynamics using a mean-field model of conductance-based networks of adaptive exponential integrate-and-fire neurons. J Comput Neurosci 44:45-61 [Journal] [PubMed]

   Mesoscopic dynamics from AdEx recurrent networks (Zerlaut et al., JCNS 2017) [Model]

(13 refs)