Citation Relationships



Amit DJ, Brunel N (1997) Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb Cortex 7:237-52 [PubMed]

References and models cited by this paper

References and models that cite this paper

Arsiero M, Lüscher HR, Lundstrom BN, Giugliano M (2007) The impact of input fluctuations on the frequency-current relationships of layer 5 pyramidal neurons in the rat medial prefrontal cortex. J Neurosci 27:3274-84 [Journal] [PubMed]

   Input Fluctuations effects on f-I curves (Arsiero et al. 2007) [Model]

Aviel Y, Horn D, Abeles M (2005) Memory capacity of balanced networks. Neural Comput 17:691-713 [Journal] [PubMed]

Banerjee A (2006) On the sensitive dependence on initial conditions of the dynamics of networks of spiking neurons. J Comput Neurosci 20:321-48 [Journal] [PubMed]

Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci 8:183-208 [PubMed]

   Sparsely connected networks of spiking neurons (Brunel 2000) [Model]

Brunel N, Hakim V (1999) Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput 11:1621-71 [PubMed]

   Fast global oscillations in networks of I&F neurons with low firing rates (Brunel and Hakim 1999) [Model]

Brunel N, Hansel D (2006) How noise affects the synchronization properties of recurrent networks of inhibitory neurons. Neural Comput 18:1066-110 [Journal] [PubMed]

Brunel N, Wang XJ (2001) Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J Comput Neurosci 11:63-85 [PubMed]

Burkitt AN, Meffin H, Grayden DB (2004) Spike-timing-dependent plasticity: the relationship to rate-based learning for models with weight dynamics determined by a stable fixed point. Neural Comput 16:885-940 [Journal] [PubMed]

Chover J, Haberly LB, Lytton WW (2001) Alternating dominance of NMDA and AMPA for learning and recall: a computer model. Neuroreport 12:2503-7 [PubMed]

Curti E, Mongillo G, La Camera G, Amit DJ (2004) Mean field and capacity in realistic networks of spiking neurons storing sparsely coded random memories. Neural Comput 16:2597-637 [Journal] [PubMed]

Durstewitz D (2006) A few important points about dopamine's role in neural network dynamics. Pharmacopsychiatry 39 Suppl 1:S72-5 [Journal] [PubMed]

Edin F, Macoveanu J, Olesen P, Tegnér J, Klingberg T (2007) Stronger synaptic connectivity as a mechanism behind development of working memory-related brain activity during childhood. J Cogn Neurosci 19:750-60 [Journal] [PubMed]

   Fronto-parietal visuospatial WM model with HH cells (Edin et al 2007) [Model]

Feinerman O, Segal M, Moses E (2007) Identification and dynamics of spontaneous burst initiation zones in unidimensional neuronal cultures. J Neurophysiol 97:2937-48 [Journal] [PubMed]

Fransén E, Lansner A (1998) A model of cortical associative memory based on a horizontal network of connected columns. Network 9:235-64 [PubMed]

Golomb D, Shedmi A, Curtu R, Ermentrout GB (2006) Persistent synchronized bursting activity in cortical tissues with low magnesium concentration: a modeling study. J Neurophysiol 95:1049-67 [Journal] [PubMed]

   Persistent synchronized bursting activity in cortical tissues (Golomb et al 2005) [Model]

Gutkin BS, Laing CR, Colby CL, Chow CC, Ermentrout GB (2001) Turning on and off with excitation: the role of spike-timing asynchrony and synchrony in sustained neural activity. J Comput Neurosci 11:121-34 [PubMed]

Haeusler S, Maass W (2007) A statistical analysis of information-processing properties of lamina-specific cortical microcircuit models. Cereb Cortex 17:149-62 [Journal] [PubMed]

   Information-processing in lamina-specific cortical microcircuits (Haeusler and Maass 2006) [Model]

Izhikevich EM (2006) Polychronization: computation with spikes. Neural Comput 18:245-82 [Journal] [PubMed]

   Polychronization: Computation With Spikes (Izhikevich 2005) [Model]

Jercog D, Roxin A, Barthó P, Luczak A, Compte A, de la Rocha J (2017) UP-DOWN cortical dynamics reflect state transitions in a bistable network. Elife [Journal] [PubMed]

   Models for cortical UP-DOWN states in a bistable inhibitory-stabilized network (Jercog et al 2017) [Model]

Joelving FC, Compte A, Constantinidis C (2007) Temporal properties of posterior parietal neuron discharges during working memory and passive viewing. J Neurophysiol 97:2254-66 [Journal] [PubMed]

Kumar A, Schrader S, Aertsen A, Rotter S (2008) The high-conductance state of cortical networks. Neural Comput 20:1-43 [Journal] [PubMed]

La Camera G, Rauch A, Lüscher HR, Senn W, Fusi S (2004) Minimal models of adapted neuronal response to in vivo-like input currents. Neural Comput 16:2101-24 [Journal] [PubMed]

Latham PE, Nirenberg S (2004) Computing and stability in cortical networks. Neural Comput 16:1385-412 [Journal] [PubMed]

Lerchner A, Ursta C, Hertz J, Ahmadi M, Ruffiot P, Enemark S (2006) Response variability in balanced cortical networks. Neural Comput 18:634-59 [Journal] [PubMed]

Litwin-Kumar A, Doiron B (2012) Slow dynamics and high variability in balanced cortical networks with clustered connections. Nat Neurosci 15:1498-505 [Journal] [PubMed]

   Excitatory and inhibitory population activity (Bittner et al 2017) (Litwin-Kumar & Doiron 2017) [Model]

Lundqvist M, Rehn M, Djurfeldt M, Lansner A (2006) Attractor dynamics in a modular network model of neocortex. Network 17:253-76 [Journal] [PubMed]

Ly C, Tranchina D (2007) Critical analysis of dimension reduction by a moment closure method in a population density approach to neural network modeling. Neural Comput 19:2032-92 [Journal] [PubMed]

Maass W, Joshi P, Sontag ED (2007) Computational aspects of feedback in neural circuits. PLoS Comput Biol 3:e165 [Journal] [PubMed]

   Computational aspects of feedback in neural circuits (Maass et al 2006) [Model]

Macoveanu J, Klingberg T, Tegnér J (2006) A biophysical model of multiple-item working memory: a computational and neuroimaging study. Neuroscience 141:1611-8 [Journal] [PubMed]

Meffin H, Burkitt AN, Grayden DB (2004) An analytical model for the "large, fluctuating synaptic conductance state" typical of neocortical neurons in vivo. J Comput Neurosci 16:159-75 [Journal] [PubMed]

Miller P, Wang XJ (2006) Stability of discrete memory states to stochastic fluctuations in neuronal systems. Chaos 16:026109 [Journal] [PubMed]

Miyawaki Y, Okada M (2004) A network model of perceptual suppression induced by transcranial magnetic stimulation. Neural Comput 16:309-31 [Journal] [PubMed]

Mongillo G, Amit DJ (2001) Oscillations and irregular emission in networks of linear spiking neurons. J Comput Neurosci 11:249-61 [PubMed]

Morita K, Okada M, Aihara K (2007) Selectivity and stability via dendritic nonlinearity. Neural Comput 19:1798-853 [Journal] [PubMed]

Muresan RC, Savin C (2007) Resonance or integration? Self-sustained dynamics and excitability of neural microcircuits. J Neurophysiol 97:1911-30 [Journal] [PubMed]

Potjans TC, Diesmann M (2014) The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model. Cereb Cortex 24:785-806 [Journal] [PubMed]

   A full-scale cortical microcircuit spiking network model (Shimoura et al 2018) [Model]

Renart A, Moreno-Bote R, Wang XJ, Parga N (2007) Mean-driven and fluctuation-driven persistent activity in recurrent networks. Neural Comput 19:1-46 [Journal] [PubMed]

Romani S, Amit DJ, Mongillo G (2006) Mean-field analysis of selective persistent activity in presence of short-term synaptic depression. J Comput Neurosci 20:201-17 [Journal] [PubMed]

Ros E, Carrillo R, Ortigosa EM, Barbour B, Agís R (2006) Event-driven simulation scheme for spiking neural networks using lookup tables to characterize neuronal dynamics. Neural Comput 18:2959-93 [Journal] [PubMed]

Rubin J, Terman D, Chow C (2001) Localized bumps of activity sustained by inhibition in a two-layer thalamic network. J Comput Neurosci 10:313-31 [PubMed]

Senn W, Fusi S (2005) Learning only when necessary: better memories of correlated patterns in networks with bounded synapses. Neural Comput 17:2106-38 [Journal] [PubMed]

Shanahan M (2008) A spiking neuron model of cortical broadcast and competition. Conscious Cogn 17:288-303 [Journal] [PubMed]

   A spiking model of cortical broadcast and competition (Shanahan 2008) [Model]

Soula H, Beslon G, Mazet O (2005) Spontaneous Dynamics of Asymmetric Random Recurrent Spiking Neural Networks Neural Comput 18:60-79

Soula H, Chow CC (2007) Stochastic dynamics of a finite-size spiking neural network. Neural Comput 19:3262-92 [Journal] [PubMed]

Sterratt D, Graham B, Gillies A, Willshaw D (2011) Principles of Computational Modelling in Neuroscience, Cambridge University Press :1-401 [Journal]

   Principles of Computational Modelling in Neuroscience (Book) (Sterratt et al. 2011) [Model]

Sussillo D, Abbott LF (2009) Generating coherent patterns of activity from chaotic neural networks. Neuron 63:544-57 [Journal] [PubMed]

   Generating coherent patterns of activity from chaotic neural networks (Sussillo and Abbott 2009) [Model]

Vasilaki E, Giugliano M (2014) Emergence of connectivity motifs in networks of model neurons with short- and long-term plastic synapses. PLoS One 9:e84626 [Journal] [PubMed]

   Emergence of Connectivity Motifs in Networks of Model Neurons (Vasilaki, Giugliano 2014) [Model]

Vogels TP, Abbott LF (2005) Signal propagation and logic gating in networks of integrate-and-fire neurons. J Neurosci 25:10786-95 [Journal] [PubMed]

   Networks of spiking neurons: a review of tools and strategies (Brette et al. 2007) [Model]
   Thalamocortical Relay cell under current clamp in high-conductance state (Zeldenrust et al 2018) [Model]

Vogels TP, Sprekeler H, Zenke F, Clopath C, Gerstner W (2011) Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science 334:1569-73 [Journal] [PubMed]

   Inhibitory plasticity balances excitation and inhibition (Vogels et al. 2011) [Model]

Wimmer K, Compte A, Roxin A, Peixoto D, Renart A, de la Rocha J (2015) Sensory integration dynamics in a hierarchical network explains choice probabilities in cortical area MT. Nat Commun 6:6177 [Journal] [PubMed]

   Hierarchical network model of perceptual decision making (Wimmer et al 2015) [Model]

Wong KF, Wang XJ (2006) A recurrent network mechanism of time integration in perceptual decisions. J Neurosci 26:1314-28 [Journal] [PubMed]

Zerlaut Y, Chemla S, Chavane F, Destexhe A (2018) Modeling mesoscopic cortical dynamics using a mean-field model of conductance-based networks of adaptive exponential integrate-and-fire neurons. J Comput Neurosci 44:45-61 [Journal] [PubMed]

   Mesoscopic dynamics from AdEx recurrent networks (Zerlaut et al., JCNS 2017) [Model]

Zylbertal A, Kahan A, Ben-Shaul Y, Yarom Y, Wagner S (2015) Prolonged Intracellular Na+ Dynamics Govern Electrical Activity in Accessory Olfactory Bulb Mitral Cells. PLoS Biol 13:e1002319 [Journal] [PubMed]

   AOB mitral cell: persistent activity without feedback (Zylbertal et al., 2015) [Model]

(53 refs)