Citation Relationships



Thomson AM, Destexhe A (1999) Dual intracellular recordings and computational models of slow inhibitory postsynaptic potentials in rat neocortical and hippocampal slices. Neuroscience 92:1193-215[PubMed]

References and models cited by this paper

References and models that cite this paper

Ali AB, Deuchars J, Pawelzik H, Thomson AM (1998) CA1 pyramidal to basket and bistratified cell EPSPs: dual intracellular recordings in rat hippocampal slices. J Physiol 507 ( Pt 1):201-17 [PubMed]

Andrade R, Malenka RC, Nicoll RA (1986) A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science 234:1261-5 [PubMed]

Atkins PW (1986) Physical Chemistry

Benardo LS (1994) Separate activation of fast and slow inhibitory postsynaptic potentials in rat neocortex in vitro. J Physiol 476:203-15 [PubMed]

Bowery NG, Hill DR, Hudson AL (1983) Characteristics of GABAB receptor binding sites on rat whole brain synaptic membranes. Br J Pharmacol 78:191-206 [PubMed]

Clark JA, Amara SG (1994) Stable expression of a neuronal gamma-aminobutyric acid transporter, GAT-3, in mammalian cells demonstrates unique pharmacological properties and ion dependence. Mol Pharmacol 46:550-7 [PubMed]

Cobb SR, Buhl EH, Halasy K, Paulsen O, Somogyi P (1995) Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378:75-8 [PubMed]

Crunelli V, Haby M, Jassik-Gerschenfeld D, Leresche N, Pirchio M (1988) Cl- - and K+-dependent inhibitory postsynaptic potentials evoked by interneurones of the rat lateral geniculate nucleus. J Physiol 399:153-76 [PubMed]

Destexhe A, Mainen ZF, Sejnowski TJ (1998) Kinetic models of synaptic transmission Methods In Neuronal Modeling, Koch C:Segev I, ed. pp.1

   Kinetic synaptic models applicable to building networks (Destexhe et al 1998) [Model]

Destexhe A, Sejnowski TJ (1995) G protein activation kinetics and spillover of gamma-aminobutyric acid may account for differences between inhibitory responses in the hippocampus and thalamus. Proc Natl Acad Sci U S A 92:9515-9 [PubMed]

Diamond JS, Jahr CE (1997) Transporters buffer synaptically released glutamate on a submillisecond time scale. J Neurosci 17:4672-87 [PubMed]

Dutar P, Nicoll RA (1988) A physiological role for GABAB receptors in the central nervous system. Nature 332:156-8 [PubMed]

Hille B (1992) Potassium channels and chloride channels Ionic Channels of Excitable Membrane, Hille B, ed. pp.115

Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179-209 [PubMed]

Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500-44 [Journal] [PubMed]

   Squid axon (Hodgkin, Huxley 1952) (LabAXON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (NEURON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SNNAP) [Model]
   Squid axon (Hodgkin, Huxley 1952) used in (Chen et al 2010) (R language) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SBML, XPP, other) [Model]

Hosoya Y, Yamada M, Ito H, Kurachi Y (1996) A functional model for G protein activation of the muscarinic K+ channel in guinea pig atrial myocytes. Spectral analysis of the effect of GTP on single-channel kinetics. J Gen Physiol 108:485-95 [PubMed]

Isaacson JS, Solis JM, Nicoll RA (1993) Local and diffuse synaptic actions of GABA in the hippocampus. Neuron 10:165-75 [PubMed]

Jarolimek W, Misgeld U (1993) 4-Aminopyridine-induced synaptic GABAB currents in granule cells of the guinea-pig hippocampus. Pflugers Arch 425:491-8 [PubMed]

Kehl SJ, McLennan H (1983) Evidence for a bicuculline-insensitive long-lasting inhibition in the CA3 region of the rat hippocampal slice. Brain Res 279:278-81 [PubMed]

Kim U, Sanchez-Vives MV, McCormick DA (1997) Functional dynamics of GABAergic inhibition in the thalamus. Science 278:130-4 [PubMed]

Lacaille JC, Schwartzkroin PA (1988) Stratum lacunosum-moleculare interneurons of hippocampal CA1 region. II. Intrasomatic and intradendritic recordings of local circuit synaptic interactions. J Neurosci 8:1411-24 [PubMed]

Lenz RA, Pitler TA, Alger BE (1997) High intracellular Cl- concentrations depress G-protein-modulated ionic conductances. J Neurosci 17:6133-41 [PubMed]

Mody I, De Koninck Y, Otis TS, Soltesz I (1994) Bridging the cleft at GABA synapses in the brain. Trends Neurosci 17:517-25 [PubMed]

Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88-118

Morita K, North RA (1985) Significance of slow synaptic potentials for transmission of excitation in guinea-pig myenteric plexus. Neuroscience 14:661-72 [PubMed]

Nurse S, Lacaille JC (1997) Do GABAA and GABAB inhibitory postsynaptic responses originate from distinct interneurons in the hippocampus? Can J Physiol Pharmacol 75:520-5 [PubMed]

Otis TS, De Koninck Y, Mody I (1993) Characterization of synaptically elicited GABAB responses using patch-clamp recordings in rat hippocampal slices. J Physiol 463:391-407 [PubMed]

Otis TS, Mody I (1992) Differential activation of GABAA and GABAB receptors by spontaneously released transmitter. J Neurophysiol 67:227-35 [Journal] [PubMed]

Perez-Pinzon MA, Tao L, Nicholson C (1995) Extracellular potassium, volume fraction, and tortuosity in rat hippocampal CA1, CA3, and cortical slices during ischemia. J Neurophysiol 74:565-73 [Journal] [PubMed]

Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical Recipes The Art Of Scientic Computing, University CAMBRIDGEPRESS, ed.

Rusakov DA, Kullmann DM (1998) Extrasynaptic glutamate diffusion in the hippocampus: ultrastructural constraints, uptake, and receptor activation. J Neurosci 18:3158-70 [PubMed]

Segal M (1990) A subset of local interneurons generate slow inhibitory postsynaptic potentials in hippocampal neurons. Brain Res 511:163-4 [PubMed]

Sodickson DL, Bean BP (1996) GABAB receptor-activated inwardly rectifying potassium current in dissociated hippocampal CA3 neurons. J Neurosci 16:6374-85 [PubMed]

Solis JM, Nicoll RA (1992) Pharmacological characterization of GABAB-mediated responses in the CA1 region of the rat hippocampal slice. J Neurosci 12:3466-72 [PubMed]

Thompson SM, Gahwiler BH (1992) Effects of the GABA uptake inhibitor tiagabine on inhibitory synaptic potentials in rat hippocampal slice cultures. J Neurophysiol 67:1698-701 [Journal] [PubMed]

Thomson AM, West DC, Hahn J, Deuchars J (1996) Single axon IPSPs elicited in pyramidal cells by three classes of interneurones in slices of rat neocortex. J Physiol 496 ( Pt 1):81-102 [PubMed]

Destexhe A, Contreras D, Steriade M (2001) LTS cells in cerebral cortex and their role in generating spike-and-wave oscillations. Neurocomputing 38:555-563 [Journal]

   Pyramidal Neuron: Deep, Thalamic Relay and Reticular, Interneuron (Destexhe et al 1998, 2001) [Model]

Destexhe A, Sejnowski TJ (2003) Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiol Rev 83:1401-53 [PubMed]

Hines ML, Carnevale NT (2001) NEURON: a tool for neuroscientists. Neuroscientist 7:123-35 [Journal] [PubMed]

   Spatial gridding and temporal accuracy in NEURON (Hines and Carnevale 2001) [Model]

Hines ML, Carnevale NT (2003) Personal Communication of NEURON bibliography

Konstantoudaki X, Papoutsi A, Chalkiadaki K, Poirazi P, Sidiropoulou K (2014) Modulatory effects of inhibition on persistent activity in a cortical microcircuit model. Front Neural Circuits 8:7 [Journal] [PubMed]

   Pyramidal neuron, fast, regular, and irregular spiking interneurons (Konstantoudaki et al 2014) [Model]

Papoutsi A, Sidiropoulou K, Cutsuridis V, Poirazi P (2013) Induction and modulation of persistent activity in a layer V PFC microcircuit model. Front Neural Circuits 7:161 [Journal] [PubMed]

   L5 PFC microcircuit used to study persistent activity (Papoutsi et al. 2014, 2013) [Model]

Rhodes P (2006) The properties and implications of NMDA spikes in neocortical pyramidal cells. J Neurosci 26:6704-15 [PubMed]

Sanders H, Berends M, Major G, Goldman MS, Lisman JE (2013) NMDA and GABAB (KIR) conductances: the "perfect couple" for bistability J Neurosci 33:424-9 [Journal] [PubMed]

   NMDAR & GABAB/KIR Give Bistable Dendrites: Working Memory & Sequence Readout (Sanders et al., 2013) [Model]

Sanders H, Kolterman BE, Shusterman R, Rinberg D, Koulakov A, Lisman J (2014) A network that performs brute-force conversion of a temporal sequence to a spatial pattern: relevance to odor recognition. Front Comput Neurosci 8:108 [Journal] [PubMed]

   NMDAR & GABAB/KIR Give Bistable Dendrites: Working Memory & Sequence Readout (Sanders et al., 2013) [Model]

(45 refs)