Citation Relationships



Rinzel J (1985) Bursting oscillations in an excitable membrane model, in ordinary and partial differential equations New Lecture Notes in Mathematics 1151:304-316

References and models cited by this paper

References and models that cite this paper

Bertram R, Rhoads J, Cimbora WP (2008) A phantom bursting mechanism for episodic bursting. Bull Math Biol 70:1979-93 [Journal] [PubMed]

   A phantom bursting mechanism for episodic bursting (Bertram et al 2008) [Model]

Best J, Park C, Terman D, Wilson C (2007) Transitions between irregular and rhythmic firing patterns in excitatory-inhibitory neuronal networks. J Comput Neurosci 23:217-35 [Journal] [PubMed]

Breen BJ, Gerken WC, Butera RJ (2003) Hybrid integrate-and-fire model of a bursting neuron. Neural Comput 15:2843-62 [Journal] [PubMed]

Channell P, Fuwape I, Neiman AB, Shilnikov AL (2009) Variability of bursting patterns in a neuron model in the presence of noise. J Comput Neurosci 27:527-42 [Journal] [PubMed]

   Reduced leech heart interneuron (Channell et al. 2009) [Model]

Ermentrout GB, Terman DH (2010) Mathematical Foundations of Neuroscience Interdisciplinary Applied Mathematics, Antman SS:Marsden JE:Sirovich L:Wiggins, ed. pp.1 [Journal]

   Mathematical Foundations of Neuroscience (Ermentrout and Terman 2010) [Model]

Fröhlich F, Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (2006) Slow state transitions of sustained neural oscillations by activity-dependent modulation of intrinsic excitability. J Neurosci 26:6153-62 [Journal] [PubMed]

Liu YH, Wang XJ (2001) Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron. J Comput Neurosci 10:25-45 [PubMed]

Shorten PR, Wall DJ (2000) A Hodgkin-Huxley model exhibiting bursting oscillations. Bull Math Biol 62:695-715 [Journal] [PubMed]

Toporikova N, Tabak J, Freeman ME, Bertram R (2008) A-type K(+) current can act as a trigger for bursting in the absence of a slow variable. Neural Comput 20:436-51 [Journal] [PubMed]

Venugopal S, Travers JB, Terman DH (2007) A computational model for motor pattern switching between taste-induced ingestion and rejection oromotor behaviors. J Comput Neurosci 22:223-38 [Journal] [PubMed]

Vo T, Tabak J, Bertram R, Wechselberger M (2014) A geometric understanding of how fast activating potassium channels promote bursting in pituitary cells. J Comput Neurosci 36:259-78 [Journal] [PubMed]

   Understanding how fast activating K+ channels promote bursting in pituitary cells (Vo et al 2014) [Model]

(11 refs)